A Generic Lie Group Model for Computer Vision

Within this research track we follow a generic Lie group approach to computer vision
based omecent physiological research on how the primary visual cortex in the brain
performs its unsurpassed pattern rectgm capabilities, especially in noisy, lew
contrast images with overlapping structures. This cortical modeling approach can be
emulated by sophisticated mathematical models, involving stochastic processes,
reproducing kernel theory, control theory, apdrial) differential equations on Lie
groups Previous worlhas demonstrated the power of theneralpproach{developed

by RemcadDuits and ceworkerswithin IST/€) in thespecificcontext of orientation
analysis of greyscale images vidinvertible oientation scorg' which provides a full
overview of how an image is decomposed out of (multiple) local orientations

We are currently extending this framework to higher dimensional orientation scores,
scale and orientation scores, frequency sa@esFigure 1)and velocity scoreand to
recent novel compleixnage modalities (DWMRI). We exploit these scores, their survey
of multiple features per position, their group structures, andititgisic invertibility.

The main advantage of oapproach cmpared to existing methods lies in the following
combination

1 We scordhe data coherently in a score which is a complxed function on an
affine Lie group G beyond position space,

1 We allowa stable reconstruction, so that we do not tamperalatiencebefore
processing takes place in G,

1 We consider the context of features in G and amplify only the coherent features
via contextual processing Mieft-invariantevolutions (diffusions and H3B
eguations) on the score,

1 We extracbptimal curve in Gvia geometrical control theory based on the
enhanced/evolved sores,

1 We generically deakith the processing of multiple features (e.g. crossing lines,
crossing textures, occlusions), without the involvement diadclassification of
complex structures such assings.

We have already outperformed many methods in appiedicalimagingandwe aim for
a completd.ie group theoreticalinderpinningfor perceptual organization in vision.

For anillustration of the practical benefits ofeft-invariant processig via scoressee
Figurel& 2 (cases G=SE(2),H(5),SIM(2)peeFigure 3 (case G=SE(2)) aneesFigure
4,5 and 6 (case G=SE(3)DW-MRI),

NB.

SE(d) = Lie group of rigid body motions

SIM(2) = Lie group oftranslations ang@lanar rotations anstalings,
H(5) =5-dim. Heisenberg group.
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Figure 1 Left: original images with region of interesRight : flat visualizations of scoredefined on

specific Lie groups (a) real part of multiple scale orientation score®BM(2)) , (b) real part of invertible
orientation score (G=SE(2)) , (c) scale space representation, (d) frequency score (G=H(5)) with color coded
phase. Bottom right: one slice in orientatiscore with color coded phase (distinguishing lines and edges).

Figure 2 Various applications dfleft-invariant)processing (detectiowja scores. From left to right:
1.Detection of catheters in leeontrast X-ray fluoroscopy imagega orientation scores, 2.ré&ck
detection in graite stone slabgia orientation scores , 3.u@ntification cardiac wall deforntians via
frequency scores, 4.Detection of the branchettnal vascular structure viémultiple scaleprientation
scores outperfornthe state of the art algorithms.



Figure 3 Left-invariant processing via invertible orientation scores is the right approach to deal with
crossings and bifurcations in practice. Left column: original images. Middle column: result of standard
coherence enhancimiffusion applied directly in the image domain (CED).

Right column: coherence enhancing diffusion via invertible orientation score-(@®DP

1% row: 2-photon microscopy image of bone tissB¥.row: 2-photon microscopy image of muscle cell.

3 row : collagen fibers of the heatt™ row: artificial noisy interference patterfiypically, these
applications clearly show that coherence enhancing diffusion on orierdatioes (CEBOS) is capable of
handling crossings and bifurcations, whereas (CED)ymres! spurious afiacts at such junctions.
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Figure4 DW-MRI provides a field of angular diffusivity profilesf water molecules that follow biological fibers in
brain white matter. rievitable measurement erransiuce some profiles thatespoorly aligned with neighboring
profiles Scanning time limitations impose limiteshgular resolutioso that compleiber structures (crossings) are
poorly represented’herefore contextual processingiseded.Here we appliedcontextual processinga a
concatenationf aleft-invariantHJB-system (erosionrdndan adaptivediffusion on thecoupled space gfosition and
orientation(that is theLie group quotienSE(3)/({0} x SO(2)) .

b) c) d)

Figure5 lllustration of howcontextual processing via Liearp SE(3)depictedin Figure Imakes a serious

difference ina reuro imageapplication épilepsy surgery)a) In treating epilepsy surgeons should not damage the optic
radiation fibers (OR) as they are responsible for the p&tieigual sight. b) via f;\®l we know where the OR starts
(V1,calcarine sulcus in re@nd endgLGN in blue). c) probabilistic fiber tracking methods sucle@strackgenerate

an incredible amount of tracts selecting only those tracts that start in V1 and end in LGN. This @adlcetither

of tracts d) We scoreghese tractsising the enhanced D\MRI data and select the OR. Thiglifficult asthere are

many crossinfpearby fiberghat complicatehe tracking seee). State of the artc®ringof tracts basedn original DW

MRI produces many errors (anatomically implausibigcts) whereascoring of tracts based on our contextually
processed DWMRI selects the ORekterior, posterior an@nteriorpar, including Meyess loop) perfectly.



Figure 6 The same approach of sgw optic radiation fiber tracts as Figure3, only this time applied on
difficult cases, where the neural anatomy of patients differs dramatically from the standard gdatoy
large space occupying lesiongMRI activation upon visual stimulatiowith checkerboard pattern. For

both patients, visual activity became apparent in the pathological hemisphere, which allowed us to draw

seedpoints in V1 for fiber traking.



