2DM10 Studeerwijzer 2011-2012

Version: January 9, 2012

Algemene Informatie

Assistenten begeleide zelfstudie 2DM10 2011-2012:

- Rik Kaasschieter: e.f.kaasschieter@tue.nl
- Adrian Muntean: a.muntean@tue.nl
- Frans Martens: f.j.l.martens@tue.nl

Locatie begeleide zelfstudie 2DM10 2011-2012:

- Paviljoen U46

Verantwoordelijk docent 2DM10 2011-2012:

- Luc Florack: 1.m.j.florack@tue.nl

Vervangend docent 2DM10 2011-2012, dinsdag 13-12-2011 en vrijdag 16-12-2011:

- Rik Kaasschieter: e.f.kaasschieter@tue.nl

Boek: Calculus: A Complete Course, Robert Adams \& Christopher Essex, $7^{\text {de }}$ editie © 2010

Studeerwijzer: http://bmia.bmt.tue.nl/people/lflorack/Extensions/2DM10.html

Studeerwijzer

- $\mathrm{WC}=$ werkcollege, $\mathrm{HC}=$ hoorcollege, $\mathrm{BZ}=$ begeleide zelfstudie
- BZ opgaven waarvoor een rekenmachine of Matlab nodig is mogen worden overgeslagen
- WC en HC hebben inhoudelijk (vrijwel) hetzelfde format van een hoorcollege
- er kunnen geen rechten ontleend worden aan deze studeerwijzer
- deze studeerwijzer zal geregeld worden aangepast gedurende de collegeperiode, controleer deze dus regelmatig
- HC 1 15-11-2011: \mathbb{C}-numbers and \mathbb{C}-functions, Appendices I-II
- \mathbb{C}-basics and de Moivre's Theorem, pp. A-1-10
- \mathbb{C}-functions in general and graphical representation, p. A-11, Fig. II. 1
- BZ 1 17-11-2011: odd exercises Appendix II, p. A-19: 27-35
- WC 1 18-11-2011: \mathbb{C}-functions, Appendix II
- definition and graphical representation of \mathbb{C}-exponential function, pp. A-15-16
- definition and graphical representation of \mathbb{C}-monomial z^{n}, pp. A-11-12, Fig. II. 1
- C-polynomials and Fundamental Theorem of Algebra (without proof), pp. A-16-17
- basic algebraic manipulation (solutions to $2^{\text {nd }}$ order, factorization via division)
- HC 2 22-11-2011: differentiation, chapter 2
- standard functions and their derivatives, pp. 99-124
- general differentiation rules, pp. 107-118
- derivatives of standard functions
- function (anti-)symmetrisation and definitions of sinh, cosh, and tanh, pp. 198-200
- mathematical induction ("volledige inductie"), p. 109
- BZ 2 24-11-2011: foregoing BZ exercises, and
- Appendix II, p. A-19: 17, 21
- odd exercises 2.3, p. 114 \& 2.4, p. 119 \& 2.5, pp. 124-125
- WC 2 25-11-2011:
- examples of mathematical induction ("volledige inductie"), p. 109
- Rolle's Theorem, pp. 140-141

- HC 3 29-11-2011:

- Mean Value Theorem, pp. 136-142
- examples of estimates via the Mean Value Theorem, pp. 136-142
- Generalized Mean Value Theorem, pp. 141-142
- BZ 3 01-12-2011: foregoing BZ exercises, and
- prove by induction: Theorem 1(c), p. 291
- odd exercises 2.8, p. 142
- WC 3 02-12-2011:
- linear approximations, pp. 266-271
- Taylor polynomials and some examples, pp. 271-279
- HC 4 06-12-2011:
- proof of Taylor's Theorem, pp. 271-275
- big-O notation, pp. 276-279
- Taylor formulas for standard functions, p. 277
- BZ 4 08-12-2011: foregoing BZ exercises, and
- odd exercises 4.9, p. 271
- prove by induction: $\frac{d^{n}}{d x^{n}} \frac{1}{1-x}=\frac{n!}{(1-x)^{n+1}}$; subsequently prove Table 5(d), p. 277
- odd exercises 4.10, pp. 279-280
- give the Taylor polynomials of $\sinh x$ and $\cosh x$ of order n near $x=0$, cf. pp. 198-199
- WC 4 09-12-2011:
- Σ-notation, pp. 288-292
- partitions, upper and lower Riemann sums, definite integral, pp. 299-302
- general Riemann sums, pp. 303-304
- properties of definite integral, pp. 305-307
- Mean Value Theorem for definite integral, pp. 308-309
- Fundamental Theorem of Calculus, pp. 311-315
- HC 5 13-12-2011:
- method of substitution, pp. 316-322
- integration by parts, pp. 331-336
- BZ 5 15-12-2011: foregoing BZ exercises, and
- exercises 5.1, pp. 292-293: 11, 13, 33, 35-38 (all via mathematical induction)
- odd exercises 5.5 up to 45
- exercises 5.6, pp. 323-324: $1,3,5,7,9,11,13,15,17,19,21,23,25,27,33,41,43$ * hint 11: rewrite in terms of $\cosh x$ and $\sinh x$ and recall $\cosh ^{\prime} x=\sinh x, \sinh ^{\prime} x=\cosh x$
* hint 19: $y=\ln \cos x$ (it is assumed that x is such that $\cos x>0$)
* hint 21: $x^{2}+6 x+13=4\left(\left(\frac{1}{2} x+\frac{3}{2}\right)^{2}+1\right)$
- WC 5 16-12-2011:
- integral of a rational function, pp. 337-345
- section 2.10 , pp. 147-152
- introduction to ODEs and initial value problems
- HC 6 20-12-2011:
- classification of ordinary differential equations (ODEs):
* $n^{\text {th }}$ order linear (in)homogeneous ODEs with (non)constant coefficients
* $1^{\text {st }}$ order (non)linear separable ODEs
- section 3.7, pp. 203-209 (especially cases I, II, and III)
- section 7.9 , pp. 445-453 (separable ODEs only)
- section 17.1, pp. 938-940 (especially Theorem 1 and Theorem 2)
- section 17.2 , pp. 941-942 (separable and $1^{\text {st }}$ order linear ODEs only)
- BZ 6 22-12-2011: foregoing BZ exercises, and
- exercises 6.1 , pp. 336-337: 1, $3,5,7,13,19,21,37$
* hint 7: $\arctan x=1 \cdot \arctan x$ (b.t.w. $\left.\tan ^{-1}=\arctan \right)$
* hint 13: perform integration by parts twice
* hint 19: $\cos (\ln x)=1 \cdot \cos (\ln x)$ (it is assumed that $x>0$)
* hint 21: substitution of variables and integration by parts are both applicable: try!
- exercises 2.10, p. 153: 27-45 (odd numbered only), 44
- exercises 3.7, pp. 209-210: 13, 14, 15, 19, 21
- exercises 7.9 , pp. 452-453: $1,3,5,7,9,13,15,17$
- WC 6 23-12-2011:
- section 17.5 , pp. 957-961 (2 ${ }^{\text {nd }}$ order only except Euler equations)
- section 17.6, pp. 961-967 (only the method of "educated guessing" or "undetermined coefficients" for constructing particular solutions)

- HC 7 10-01-2012:

- section 7.9 , pp. 445-453 (first order linear ODEs only)
- section 17.5 , pp. 957-961 (higher order only except Euler equations)
- typical examination examples
- BZ 7 12-01-2012: foregoing BZ exercises, and
- exercises 7.9 , pp. 452-453: 11, 19, 21, 23
- exercises 17.1, pp. 940-941: $1,3,5,7,9,11,17$
- exercises 17.5 , p. 961: 1, 3, 5
- exercises 17.6 , pp. 967-968: 1, 3, 5, 7, 9
* hint 1: stipulate a particular solution of the form $y_{\mathrm{p}}(x)=a x+b$
* hint 3: stipulate a particular solution of the form $y_{\mathrm{p}}(x)=a e^{b x}$
* hint 5: stipulate a particular solution of the form $y_{\mathrm{p}}(x)=a x^{2}+b x+c$
* hint 7: stipulate a particular solution of the form $y_{\mathrm{p}}(x)=(a x+b) e^{c x}$
* hint 9: stipulate a particular solution of the form $y_{\mathrm{p}}(x)=(a \sin x+b \cos x) e^{c x}$
- WC 7 13-01-2012: old exams, January 19, 2011, April 13, 2011, June 30, 2011

- Exams January 25 \& April 18, 2012:

- all theory and exercises outlined above, except subjects in italics
- all theory and examples covered in the oral lectures (HC 1-7 \& WC 1-7)
- those parts of "Calculus: A Complete Course" relating to the above
- only pen and paper are allowed, i.e. no calculator, laptop, notes or other material
- it is strongly recommended to practice with old exams

