EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Wednesday February 1, 2017. Time: 13:30-16:30. Place: AUD 9.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is not allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. Linear Algebra

Let V be an n-dimensional real vector space, with basis $\mathscr{B}_{V}=\left\{e_{1}, \ldots, e_{n}\right\}$.
a1. Show that $o \notin \mathscr{B}_{V}$, i.e. the zero vector $o \in V$ is not admissible as a basis vector.
a2. Show that, for any given $v \in V$, its decomposition $v=v^{1} e_{1}+\ldots+v^{n} e_{n}$ relative to \mathscr{B}_{V} is unique. Associated with V is the real dual vector space $V^{*}=\mathscr{L}(V, \mathbb{R})$ of all linear maps of type $\phi: V \rightarrow \mathbb{R}$.
b. How is vector addition and scalar multiplication defined on V^{*} ?

We assume that V is equipped with a real inner product $\langle. \mid\rangle:. V \times V \rightarrow \mathbb{R}:(v, w) \mapsto\langle v \mid w\rangle$. Basis \mathscr{B}_{V} and inner product $\langle. \mid$.$\rangle determine the so-called (non-singular) Gram matrix G$, with entries

$$
g_{i j} \doteq\left\langle e_{i} \mid e_{j}\right\rangle
$$

c. Let $a=a^{1} e_{1}+\ldots+a^{n} e_{n}$ and $v=v^{1} e_{1}+\ldots+v^{n} e_{n}$. Show that $\langle a \mid v\rangle=\sum_{k, \ell=1}^{n} g_{k \ell} a^{k} v^{\ell}$.
d. Show that the $\operatorname{map} \phi_{a}: V \rightarrow \mathbb{R}: v \mapsto \phi_{a}(v) \doteq\langle a \mid v\rangle$ is linear, i.e. $\phi_{a} \in V^{*}$, for any $a \in V$.
e. Show that $\phi_{a} \in V^{*}$ is uniquely defined by the parameter vector $a \in V$.
(Hint: Assume $\phi_{a}=\phi_{b}$ for $a, b \in V$, show that $a=b$.)
(5) f. Show that any $\phi \in V^{*}$ can be represented in the parametrised form $\phi_{a}=\langle a \mid$.$\rangle for some a \in V$.
(Hint: Show that there exist coefficients $\phi_{k} \in \mathbb{R}$ such that $\phi(v)=\sum_{k=1}^{n} \phi_{k} v^{k}$, and find $a \in V$ in terms of these.)

In this problem we consider the set of 2-parameter transformations on $\mathbb{L}_{2}(\mathbb{R})$ defined by

$$
G=\left\{T_{a, b}: \mathbb{L}_{2}(\mathbb{R}) \rightarrow \mathbb{L}_{2}(\mathbb{R}): f \mapsto T_{a, b}(f) \mid T_{a, b}(f)(x)=b f(x+a), a \in \mathbb{R}, b \in \mathbb{R}^{+}\right\}
$$

By $T_{a, b}(f)(x)$ we mean $\left(T_{a, b}(f)\right)(x)$. We furnish the set G with the usual composition operator, indicated by the infix symbol \circ :

$$
\circ: G \times G \rightarrow G:\left(T_{a, b}, T_{c, d}\right) \mapsto T_{a, b} \circ T_{c, d},
$$

i.e. $\left(T_{a, b} \circ T_{c, d}\right)(f)=T_{a, b}\left(T_{c, d}(f)\right)$.
a. Show that this is a good definition by proving the following claims for $a, c \in \mathbb{R}, b, d \in \mathbb{R}^{+}$:
a1. If $f \in \mathbb{L}_{2}(\mathbb{R})$, then $T_{a, b}(f) \in \mathbb{L}_{2}(\mathbb{R})$. (Closure of $\mathbb{L}_{2}(\mathbb{R})$ under the mapping $T_{a, b}$.)
a2. If $T_{a, b} \in G$, then $T_{a, b} \circ T_{c, d}=T_{a+c, b d}$. (Closure of G under composition o.)
(10) b. Show that $\{G, \circ\}$ constitutes a commutative group, and give explicit expressions for the identity element $e \in G$, and for the inverse element $T_{a, b}^{\mathrm{inv}} \in G$ corresponding to $T_{a, b} \in G$.
(10) c. Show that $G_{1}=\left\{T_{a, b} \in G \mid a \in \mathbb{R}, b=1\right\}$ is a subgroup of G.
(Hint: Exploit the fact that G is a group and $G_{1} \subset G$.)

(20) 3. PDE Theory and Fourier Analysis

The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization vector field $\vec{M}(x, y, z, t)=\left(M_{x}(x, y, z, t), M_{y}(x, y, z, t), M_{z}(x, y, z, t)\right)$ induced in a patient placed in an MRI scanner with static magnetic field $\vec{B}_{0}=\left(0,0, B_{0}\right)$. In particular, the \mathbb{C}-valued transversal magnetization $m(x, y, z, t) \doteq M_{x}(x, y, z, t)+i M_{y}(x, y, z, t)$ satisfies the partial differential equation

$$
\frac{\partial m}{\partial t}=-i \omega_{0} m-\frac{m}{T_{2}}+D \Delta m
$$

in which $\Delta \doteq \partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$ is the Laplacian. The so-called Larmor frequency $\omega_{0}>0$ is a constant proportional to B_{0}. We likewise assume $D>0$, the diffusion coefficient, and $T_{2}>0$, the spin-spin relaxation time, to be constant.
(5) a. Give the corresponding evolution equation for $\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)$ in the spatial Fourier domain.

At the start of the scan sequence, the system is initialized so that $m(x, y, z, t=0)=m_{0}(x, y, z)$, with Fourier transform $\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.
b. Determine $\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)$ as a function of time $t \geq 0$, given $\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.
c. Show that $\mu(t) \doteq \int_{\mathbb{R}^{3}} m(x, y, z, t) d x d y d z$ is not preserved as a function of time by proving the following statements:
$\left(2 \frac{1}{2}\right)$
c1. $|\mu(t)|$ decays exponentially over time towards zero.
c2. $\mu(t) /|\mu(t)|$ rotates clockwise with uniform angular velocity around the origin of the \mathbb{C}-plane.
d. Determine $m(x, y, z, t)$ as a function of time $t \geq 0$, given $m_{0}(x, y, z)$.

4. Distribution Theory \& Fourier Analysis

The set notation $S_{1} \subsetneq S_{2}$ means that S_{1} is a strict subset of S_{2}, i.e. $S_{1} \subset S_{2}$ and $S_{1} \neq S_{2}$. Let $\mathscr{D}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$ be the class of Schwartz functions in one dimension that vanish outside a finite interval.
b. Argue why this implies the strict inclusion $\mathscr{S}^{\prime}(\mathbb{R}) \subsetneq \mathscr{D}^{\prime}(\mathbb{R})$ for the corresponding topological duals.

We take for granted that $\mathscr{S}(\mathbb{R})$ is closed under Fourier transformation as well as under convolution. Let $\mathscr{S}_{m}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$ be the subset of test functions $\phi \in \mathscr{S}(\mathbb{R})$ with $m+1$ vanishing momenta

$$
\int_{-\infty}^{\infty} x^{k} \phi(x) d x=0 \quad \text { for all } k=0,1, \ldots, m
$$

(5) c. Show that this integral condition for $\phi \in \mathscr{S}_{m}(\mathbb{R})$ is equivalent to $\widehat{\phi}^{(k)}(0)=0$ for all $k=0,1, \ldots, m$. (The parenthesised superscript indicates derivative order.)
(5) d. Suppose $\phi \in \mathscr{S}_{m}(\mathbb{R})$ and $\psi \in \mathscr{S}_{n}(\mathbb{R})$ for some integers $m, n \geq 0$. Show that $\phi * \psi \in \mathscr{S}_{p}(\mathbb{R})$ in which $p=\max (m, n)$.

THE END

