
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 24, 2020. Time: 09:00–12:00. Place: Vertigo 4.06 A.

READ THIS FIRST!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator,
laptop, smartphone, or any other equipment, is not allowed.

• Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. VECTOR SPACE(35)

We consider the subset H of points in R3 given by

(?) H .
=
{

(x, y, z) ∈ R3
∣∣ x2 + y2 = 1

}
,

equipped with internal and external operations ⊕ : H×H→ H, respectively ⊗ : R×H→ H, viz.

(x, y, z)⊕ (u, v, w)
.
= (xu− yv, yu+ xv, z + w) ,

λ⊗ (x, y, z)
.
= (x cos(2πλ)− y sin(2πλ), y cos(2πλ) + x sin(2πλ), z + λ) .

For notational convenience we abbreviate elements of H as X .
= (x, y, z), U .

= (u, v, w) et cetera.

a. Prove closure, i.e. show that X ⊕ U ∈ H and λ⊗X ∈ H for all X,U ∈ H and λ ∈ R.(5)

Let X = (x, y, z) ∈ H, U = (u, v, w) ∈ H, λ ∈ R. Then X ⊕ U .
= (x, y, z) ⊕ (u, v, w)

.
= (xu − yv, yu + xv, z + w) satisfies the

constraint in (?) for its first two entries, since

(xu− yv)2 + (yu+ xv)2 = (x2 + y2)(u2 + v2)
.
= 1 ,

in which the last identity holds by definition of X,U ∈ H. The closure requirement on the third entry is trivially fulfilled: z + w ∈ R if
z, w ∈ R. Also, λ⊗X satisfies the constraint in (?) for its first two entries, since

(x cos(2πλ)− y sin(2πλ))2 + (y cos(2πλ) + x sin(2πλ))2 = (x2 + y2)(cos2(2πλ) + sin2(2πλ)) = 1 ,

while the closure requirement on the third entry is again trivial: z + λ ∈ R if z, λ ∈ R.

b. Show that X∈H can be parametrized such that the constraint in (?) is automatically fulfilled.(5)
(Hint: Introduce an angle φ ∈ R and consider polar coordinates for the (x, y)-plane.)

Writing X = (x, y, z)
.
= (cosφ, sinφ, z) will enforce the constraint x2 + y2 = cos2 φ + sin2 φ = 1 automatically. Note that any

(x, y, z) ∈ H can be represented in this way for some (unique) z ∈ R and some (non-unique) polar angle φ ∈ R.

We now investigate whether (?), furnished with the operators⊕ and⊗, satisfies all vector space axioms.
We consider the abelian group requirement for ⊕ first.



You may use the following lemma.

Lemma. For φ, θ ∈ R we have

cos(φ± θ) = cosφ cos θ ∓ sinφ sin θ ,

sin(φ± θ) = sinφ cos θ ± cosφ sin θ .

c1. Prove associativity: (X ⊕ U)⊕A = X ⊕ (U ⊕A) for all X,U,A ∈ H.(5)
(Hint: Exploit your observation in b and use the lemma.)

Take polar angles such that X = (x, y, z)
.
= (cosφ, sinφ, z), U = (u, v, w)

.
= (cos θ, sin θ, w), A= (a, b, c)

.
= (cosψ, sinψ, c). The

crucial observation is that, by virtue of the lemma,

(•) X ⊕ U = (cos(φ+θ), sin(φ+θ), z + w) .

Tacitly using trivial properties, notably associativity, of {R,+} at various places, besides the consequence of the lemma in the form of (•)
and the definition of ⊕, we thus obtain

(X ⊕ U)⊕A = ( (cos(φ+θ), sin(φ+θ), z + w) )⊕ (cosψ, sinψ, c) =

(cos((φ+ θ) + ψ), sin((φ+ θ) + ψ), (z + w) + c) = (cos(φ+ (θ + ψ)), sin(φ+ (θ + ψ)), z + (w + c)) =

(cosφ, sinφ, z)⊕ ( (cos(θ + ψ), sin(θ + ψ), w + c) ) = X ⊕ (U ⊕A) .

c2. Prove commutativity: X ⊕ U = U ⊕X for all X,U ∈ H.(21
2 )

This is a direct consequence of the lemma, notably (•), and trivial properties of {R,+}, notably its commutativity:

X ⊕ U = (cos(φ+θ), sin(φ+θ), z + w) = (cos(θ+φ), sin(θ+φ), w + z) = U ⊕X .

(A direct proof based on (?), i.e. not using the polar representation, is equally straightforward.)

c3. Show that E .
= (1, 0, 0) ∈ H is the neutral element for ⊕.(21

2 )

With the help of (•) and the observation that E = (cos 0, sin 0, 0), a direct computation reveals that, for any X = (cosφ, sinφ, z) ∈ H,

X ⊕ E = (cosφ, sinφ, z)⊕ (cos 0, sin 0, 0) = (cos(φ+ 0), sin(φ+ 0), z + 0) = (cosφ, sinφ, z) = X .

By commutativity (c2) we then also have E ⊕ X = X ⊕ E = X . (A direct proof based on (?), i.e. not using the polar representation, is

equally straightforward.)

c4. State the explicit form of the antivector (−X)∈H for any givenX ∈ H, and prove (−X)⊕X = E.(5)

Inspired by the polar form,X=(cosφ, sinφ, z), replace φ∈R by−φ∈R and z∈R by−z∈R, i.e. stipulate (−X)=(cos(−φ), sin(−φ),−z).
Indeed, we then have, using (•) once again, as well the trivialities of {R,+},

(−X)⊕X = (cosφ, sinφ, z)⊕ (cos(−φ), sin(−φ),−z) = (cos(φ+ (−φ)), sin(φ+ (−φ)), z + (−z)) = (1, 0, 0)
.
= E .

By commutativity (c2), (−X) is clearly also a right antivector: X ⊕ (−X) = E. In terms of original coordinates X = (x, y, z) subject

to the constraint in (?) we have (−X) = (x,−y,−z). (A direct proof based on (?), i.e. not using the polar representation, is equally

straightforward.)

Next we aim to verify the vector space axioms involving ⊗.



Conjecture. For any X ∈ H and λ ∈ R there exists a Λ ∈ H such that

λ⊗X = Λ⊕X .

d. Prove this conjecture by constructing the explicit form of Λ ∈ H given λ ∈ R.(5)

Take X = (x, y, z) = (cosφ, sinφ, z) ∈ H. Set Λ
.
= (cos(2πλ), sin(2πλ), λ), then, using (•), a direct verification shows that

Λ⊕X .
= (cos(2πλ), sin(2πλ), λ)⊕ (cosφ, sinφ, z) = (cos(2πλ+ φ), sin(2πλ+ φ), λ+ z))

•
=

(cosφ cos(2πλ)− sinφ sin(2πλ), sinφ cos(2πλ) + cosφ sin(2πλ), z + λ)
.
= λ⊗ (cosφ, sinφ, z)

.
= λ⊗X .

e. Show that H is not a vector space by showing that ⊗ violates the axioms for scalar multiplication.(5)
(Hint: The conjecture may be helpful.)

We only need to disprove one of the four axioms involving scalar multiplication ⊗. Consider e.g.

λ⊗ (X ⊕ U) = Λ⊕ (X ⊕ U)
c1
= (Λ⊕X)⊕ U = (λ⊗X)⊕ U 6= (λ⊗X)⊕ (λ⊗ U) .

Alternatively, if λ = 1, then Λ = (1, 0, 1) = (cos 0, sin 0, 1), so for X .
= (cosφ, sinφ, z) as before, we have

1⊗X d
= (cos 0, sin 0, 1)⊕ (cosφ, sinφ, z)

•
= (cosφ, sinφ, z + 1) 6= (cosφ, sinφ, z)

.
= X ,

violating another basic axiom. Other axioms involving ⊗ may likewise be considered to disprove a vector space structure.

♣

2. INNER PRODUCT(15)

For v, w ∈ Rn, endowed with the standard vector space structure, we wish to define a real inner product

(†) 〈v|w〉 .= vᵀ Gw ,

in which, in terms of standard vector-matrix notation, with real entries vi, gij and wj , 1 ≤ i, j ≤ n,

vᵀ
.
=
(
v1 . . . vn

)
, G .

=

g11 . . . g1n
...

...
gn1 . . . gnn

 , w
.
=

w1
...
wn

 .

The following theorems may be used without proof.

Jacobi’s Theorem. Any symmetric matrix A can be transformed into a diagonal form D .
= SᵀAS by a

suitable choice of square matrix S, in which each of the diagonal elements of D is either ±1 or 0.

Sylvester’s Law of Inertia. Recall Jacobi’s Theorem. The signature (n0, n+, n−), in which n0 denotes
the number of 0’s and n± the number of ±1’s on the diagonal of D, is the same for any choice of S.

a. Use the axioms of a real inner product to infer the constraints on the matrix G, proceeding as follows.

a1. Show that, regardless the choice of G, the definition (†) is consistent with the bilinearity axiom.(5)



a2. Find the constraint on G (or, equivalently, on its entries gij) induced by the symmetry axiom.(5)

a3. Likewise for the positivity and nondegeneracy axiom: 〈v|v〉 > 0 for all nonzero vectors v ∈ Rn.(5)

Bilinearity is evident and does not constrain gij :

• 〈λu+ µv|w〉 .= gij(λu+ µv)iwj = gij(λu
i + µvi)wj = λgiju

iwj + µgijv
iwj

.
= λ〈u|w〉+ µ〈v|w〉.

• Symmetry (next axiom) implies bilinearity, without constraints on gij .

The symmetry axiom does impose a constraint:

• 〈v|w〉 .= gijv
iwj

?
= gjiv

jwi, which equals 〈w|v〉 .= gijw
ivj iff gij = gji, i.e. G = GT must be symmetric.

Finally, the positivity and nondegeneracy axioms pose further constraints, viz.

• 〈v|v〉 .= gijv
ivj ≥ 0 iff the coefficient matrix G in this quadratic form has positive eigenvalues only.

♣

3. DISTRIBUTION THEORY(20)

We consider a travelling wave in the form of a function u : R2 → R : (x, t) 7→ u(x, t)
.
= f(x−ct), in

which f : R→ R : x 7→ f(x) is a univariate function.

a. Show that if f ∈C1(R), then u∈C1(R2) satisfies the following initial value problem:(5)

(?)


∂u

∂x
+

1

c

∂u

∂t
= 0 for (x, t)∈R2,

u(x, 0) = f(x) for x∈R.

The chain rule yields ∂xu(x, t) = f ′(x− ct)∂x(x− ct) = f ′(x− ct), respectively ∂tu(x, t) = f ′(x− ct)∂t(x− ct) = −cf ′(x− ct),

whence ∂xu+
1

c
∂tu = 0.

b. Show that if φ∈S (R), then
� ∞
−∞

dφ(x)

dx
dx = 0.(5)

Straightforward integration yields
� ∞
−∞

φ′(x)dx = [φ(x)]x→∞x→−∞ = 0 by definition of a rapid decay test function φ∈S (R).

c. Show that if f ∈P(R) ⊂ S ′(R), then u∈S ′(R2) satisfies (?) in distributional sense.(10)
(Hint: Do not assume f ∈C1(R). Consider a change of variables y=x−ct for any fixed t.)

Consider the distributional form of (?):

(??)

�
R2
u(x, t)

(
∂xφ(x, t) +

1

c
∂tφ(x, t)

)
dtdx = 0 .



The change of variables

(∗)
{

y = x− ct
s = t

with inverse

(∗∗)
{

x = y + cs
t = s

induces a Jacobian

J
.
=

(
∂x
∂y

∂x
∂s

∂t
∂y

∂t
∂s

)
=

(
1 c
0 1

)
with unit determinant | det J | = 1, whence (??) can be transformed into

�
R2
ũ(y, s)

(
∂yφ̃(y, s) +

1

c
[−c∂y + ∂s] φ̃(y, s)

)
dsdy =

1

c

�
R2
ũ(y, s)∂sφ̃(y, s) dsdy =

1

c

�
R2
f(y)∂sφ̃(y, s) dsdy = 0 ,

in which ũ(y, s)
.
= u(x, t) and φ̃(y, s)

.
= φ(x, t) given the relation (∗). In the second last step we have used the observation that

ũ(y, s)
∗∗
= u(y + cs, s) = f(y) is independent of s, so that the final step follows by virtue of the result in b applied to the innermost

s-integral.

♣

4. FOURIER TRANSFORMATION (EXAM JANUARY 17, 2011, PROBLEM 4)(30)

The Fourier convention used in this problem for functions of one variable is as follows:

f̂(ω) =

� ∞
−∞

e−iωx f(x) dx whence f(x) =
1

2π

� ∞
−∞

eiωx f̂(ω) dω .

We indicate the Fourier transform of a function f by F (f), and the inverse Fourier transform of a
function f̂ by F−1(f̂).

You may use the following standard limit, in which z ∈ C with real part Re z ∈ R:

lim
Re z→−∞

ez = 0 .

a. Let f̂+ and f̂− be any pair of C-valued functions defined in Fourier space, such that f̂−(ω) =(5)
f̂+(−ω). Assuming that the Fourier inverses f± = F−1(f̂±) exist, show that f−(x) = f+(−x).

f−(x) = 1
2π

�∞
−∞ eiωx f̂−(ω) dω = 1

2π

�∞
−∞ eiωx f̂+(−ω) dω

∗
= − 1

2π

�−∞
∞ e−iω

′x f̂+(ω′) dω′ = 1
2π

�∞
−∞ e−iωx f̂+(ω) dω =

f+(−x). In ∗ a new variable ω′ = −ω has been introduced, all other equalities follow from the given definitions.

We now consider the following particular instances:

f̂+
s (ω) =


e−sω if ω > 0
1
2 if ω = 0 (?)
0 if ω < 0

and f̂−s (ω) = f̂+
s (−ω), in which s > 0 is a parameter.

b. Give the explicit definition of f̂−s (ω) in a form similar to that of f̂+
s (ω) in Eq. (?).(5)



Replacing all instances of ω in Eq. (?) by −ω leads to

f̂−s (ω) =


esω if ω < 0
1
2

if ω = 0
0 if ω > 0

c1. Compute f+
s (x) =

(
F−1(f̂+

s )
)

(x).(5)

We have f+s (x) = 1
2π

�∞
−∞ eiωx f̂+s (ω) dω = 1

2π

�∞
0 eω(ix−s) dω = 1

2π
eω(ix−s)

ix−s

∣∣∣∞
0

= 1
2π

1
s−ix . In the last step we have used the

standard limit for the complex exponential function stated above.

c2. Compute f−s (x) =
(
F−1(f̂−s )

)
(x).(5)

According to the result under a1 we have f−s (x) = f+s (−x) = 1
2π

1
s+ix

.

d. We define f̂s = f̂+
s + f̂−s . Give the explicit form of f̂s(ω) and compute fs(x) =

(
F−1(f̂s)

)
(x).(5)

Since F−1 is a linear operator we have fs = F−1(f̂s) = F−1(f̂+s + f̂−s ) = F−1(f̂+s ) + F−1(f̂−s ) = f+s + f−s . That is,

fs(x) = 1
2π

1
s−ix + 1

2π
1

s+ix
= 1

π
s

x2+s2
.

e. Show that F (fs ∗ ft) = f̂s+t.(5)

We have F (fs ∗ ft)
∗
= F (fs) F (ft) = f̂s f̂t

?
= f̂s+t. In ∗ we have used a well-known Fourier theorem, whereas ? makes explicit use

of the property f̂s(ω) = e−s|ω|.

THE END


