EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 25, 2019. Time: 09:00-12:00. Place: AUD 13.

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
e The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

e The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator,
laptop, smartphone, or any other equipment, is not allowed.

Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!
(30) 1. GROUP HOMOMORPHISMS

(5) al. Show that Z, equipped with default integer addition, constitutes a group.

Closure: The sum of two integers is an integer. Verification of group axioms:

e Associativity: For all 21, 22, 23 € Z we have (21 + 22) + 23 = 21 + (22 + 23) = 21 + 22 + 23.
e Identity: Forall z € Z we have z + 0 = 0 + z = 2,50 0 € Z is the identity element.

e Inverse: Forall z € Z we have z + (—z) = (—z) + z = 0, s0 —z € Z is the inverse element of z.

(5)  a2. Show that C\{0}, equipped with default complex multiplication, constitutes a group.

Closure: The product of two nonzero complex numbers is a nonzero complex number. Verification of group axioms:

e Associativity: For all z1, z2, 23 € C\{0} we have (z122)2z3 = 21(2223) = z12223.
e Identity: Forall z € C\{0} wehave 2 X 1 =1 X z = 2,50 1 € C\{0} is the identity element.

e Inverse: For all z € C\{0} we have z(1/z) = (1/z)z = 1,s0 1/z € Z is the inverse element of z. Note that if z = a + b for
some a, b € R with a® + b2 # 0, then 1/z = (a — ib)/(a® + b?).
(5)  a3. Show that the set S = {1, —1,4, —i} constitutes a finite group under the same operation as in a2.

Observe that S C C\{0} is closed under multiplication. Furthermore, for each u € S it is easy to see that u~! € S as well, e.g. by
constructing the group multiplication table for S. Consequently, S C C\{0} is a subgroup.
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Definition. A group homomorphism between two groups {G, o} and { H, e} is a mapping

¢:G— H:g— ¢(g) suchthat ¢(g10g2)=¢(g1)e d(g2).

By eq €G, ey € H we denote the unit elements of G and H; g~ € G, h~! € H denote the inverses of
geGand he H.

b1. Show that ¢(ec) = eq.

Suppose h = ¢(g) € ¢(G) C H,then h = ¢(g) = d(goeq) = ¢(g) ® p(ec) = h ® (eq), whence p(eq) = ey(c) = en. The last
identity makes use of the fact that the identity element of a group (H in this case) equals that of any of its subgroups (here ¢(G) C H). To
see this, multiply the identity ¢(g) ® er = ¢(g) forall g € G, which holds on ¢(G) C H, from the left with i @ ¢(g) ™1, in which h € H
is arbitrary. This yields (h ® ¢(g) ') ® (¢(g) ® exr) = h ® ey = h, which holds on H D ¢(G).

b2. Show that ¢(g~ 1) = ¢(g) L.

Consider ey = ¢(eg) = p(gog™1) = ¢(g) @ p(g~ 1), which shows that (g~ 1) = ¢(g)~*.

c. Show that ¢ : Z — S : n +— 1(n) = " is a group homomorphism.

We have (n1 + n2) = i"1 72 = 71472 = ¢)(nq ) (n2).

Definition. The kernel of ¢ is Ker ¢ = {g€ G | #(9)=ep}. The image of ¢ isImp = {¢(g) € H| g€ G}.

Definition. A group homomorphism ¢ : G — H is an epimorphism if it is surjective, i.e. if Im¢ = H,
and a monomorphism if it is injective, i.e. if Ker ¢ = {eg}.

d1. Recall c. Specity Ker#. Is ¢ a monomorphism?

Since ¢" = 1 implies n = 4k for some k € Z we have Kerv) = {4k |k € Z}. Thus ® is not a monomorphism (unless one considers its

arguments modulo 4).

d2. Recall ¢. Specify Im . Is ¢/ an epimorphism?

Since i® = " mod 4 it guffices to consider 4F = 1, i4k+1 = 4 4k+2 — _1 4k+3 — _; for some k € Z. That is, Imy =

{1,—1,4, —i} = S. With the specified codomain 9 is therefore indeed an epimorphism.
As an aside, ¢ : Z\4AZ — S : n — (n) = " is both a monomorphism as well as an epimorphism, i.e. an isomorphism. The notation

Z\AZ is the set of equivalence classes [n] determined by any integer n € Z, in which we identify [n] = [m], or n = m, for two integers

n,m € Zif n = m mod 4, i.e. if the difference n — m is a multiple of 4.

&
2. LINEAR OPERATOR

Consider a real vector space V' with basis {e1, e2}, and an operator 7' : VxV — R : (v,w) — T'(v,w)
with the following properties:

e T is bilinear;
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o T(v,w) =-T(w,v);

e T(e,ez) = 1.

Define v = Z?Zl vie; and w = Z?Zl wle;, with o', w® € R, 4,7 =1,2.

2 2
a. Show that T'(v, w) = Z Z eijviwj for certain coefficients ¢;; and compute their values.
i=1 j=1

Inserting v = 32, vie;, w = Y2, wle; into T'(v, w) yields (32, vie;, 25:1 wiej) = 2, Z?:l T(e;, ej)viw?, in which
we have used bilinearity in the last step. Apparently €;; = T'(e;, e;). This proves the existence of the stipulated coefficients. As for their

values, note that €;; = T'(e;,e;) = —T'(ej,e;) = —€j;, whence €11 = €22 = 0 and €12 = —e21 = T'(e1,e2) = 1.

Let M, denote the linear space of nxn square matrices A with entries A;; €R, 1 <4, < n. Consider
the map . : M,, - M, : A — #)(A), in which A € R is a parameter, given by

(Aa(A));; = A (Aij + Aji)
We furthermore define the standard inner product for A, B € M, as follows:
(A|B) = trace (ABT) Z Z A;;jB;j .
=1 j=1

We call a linear operator L € Z(V, V') on a real inner product space V' symmetric if (Lv|w) = (v|Lw)
for all v,w € V. We call L a projection if L o L = L, meaning L(L(v)) = L(v) forallv € V.

b1. Show that . € Z(M,,,M,,) is symmetric for any A € R.

Consider
(AAIB) = D3 (A(A)y Big =2 > (M(Aij +A450) Bij = > > MijBij + AA;iByj
i=1j=1 i=1j=1 i=1j=1
= D D MG Biy + MG B = > Ay (M(Bij + Bji) = > Y Aij (FA(B)),; = (AlAA(B)) -
i=1j5=1 i=1j5=1 1=1j5=1

b2. For which A € R does .\ € .Z(M,,, M,,) define a projection? Prove your answer.

Note that, for arbitrary A € M,
(y)\(y)\(A)))U =\ (y)\(A)” + y/\(A)JZ) = 2)\2 (Aij + Aji) = 2)\y/\(14)1‘j

By definition of a projection we must therefore impose either 2A = 1, whence A = 1/2, or the trivial case, A\ = 0, corresponding to the

trivial map %y = 0 € £ (M, My,).

&

3. PDE THEORY AND FOURIER ANALYSIS (EXAM FEBRUARY 1, 2017, PROBLEM 3)
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The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization
vector field M (z,y, z,t) = (My(x,y, z,t), My(z,y, z,t), M,(z,y, 2,t)) induced in a patient placed
in an MRI scanner with static magnetic field Eo = (0,0, By). In particular, the C-valued transversal
magnetization m(x,y, z,t) = My(z,y, z,t) +iM,(z,y, 2, t) satisfies the partial differential equation
0
8—? = —lwgm — % + DAm,
in which A = 92/92% + 9%/0y* + 9% /022 is the Laplacian. The so-called Larmor frequency wo > 0
is a constant proportional to By. We likewise assume D > 0, the diffusion coefficient, and 75 > 0, the
spin-spin relaxation time, to be constant.

a. Give the corresponding evolution equation for m(w;, wy,w., t) in the spatial Fourier domain.

‘We have
om

1

in which ||w||? = w2 + wg + w2

At the start of the scan sequence, the system is initialized so that m(z,y, z,t=0) = mo(z, y, z), with
Fourier transform mg(w,, wy, w-).

b. Determine m(wy, wy, w., t) as a function of time ¢ > 0, given Mg (wy, Wy, W ).

‘We have

~ ~ —(2 2
M wa, Wy, Wz, t) = Mo (We, wy, wz) € (iwo+1/T2+D||w|*)t

c. Show that yu(t) = [gs m(z,y, z,t)dzdydz is not preserved as a function of time by proving the
following statements:

cl.

w(t)| decays exponentially over time towards zero.

c2. u(t)/|p(t)| rotates clockwise with uniform angular velocity around the origin of the C-plane.

‘We have
p(t) = / m(z,y, z, t)dzdydz = (0,0,0,t) = iig(0,0,0) e~ (w0t 1/T2)t
R3

Both statements follow by inspection: |u(t)| = |70(0,0,0)] e~/ T2, resp. u(t)/|u(t)] = e~ “«ot=®) in which the phase angle ¢ is
defined such that ¢'® & 7(0,0,0) /|70 (0, 0, 0).

d. Determine m(x, y, z,t) as a function of time ¢ > 0, given mo(z, y, 2).

‘We have the solution implicitly in Fourier space, cf. problem b. Write it as

— ¢ (iwo+1/Ta)t

m(wﬂhwa"‘Jz?t) mo(w$va7wz)¢i(w%7wva3)7

in which ~ R
Ot (wWz, wy,wz) = e~ Pllwli®t

In order to obtain its Fourier inverse we may apply one of the convolution theorems (the overall factor e~ (1wo+1/T2)t can be seen as a
constant factor, since it does not involve w = (wg, Wy, w2 ), and can be separated by virtue of linearity of the Fourier transform):
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in which

¢t(x7 Y, Z)

2 2 2
2 .
/ e*DHwH t+7,w<zdw _ ; 6—71 -Z%;z )
R3

T (@n)? Var D

Here we have abbreviated w - £ = wzx + wyy + wz 2.

4. DISTRIBUTION THEORY & SCALE SPACE

Consider the discontinuous function sign : R — R : z +— sign (z), given by

-1 ifz<0
(%) sign(x) = 0 ifz=0
+1 ifx>0

Below we consider its derivative sign’ in the sense of distribution theory, respectively scale space theory.
a. Show that, in distributional sense, sign’(x) =24§(x), in which § €.%”(R) is the Dirac function.
Hint: Use the proper definition for the regular tempered distribution sign € .#’(R) associated with (x).

For any ¢ € .7 (R) we have sign’(¢) = —sign(¢') = — [0 sign(y) &/ (y) dy = [° ¢/ (v) dy — [° ¢/ (y) dy = 26(0) = 25(¢),
whence sign’ = 2§ € .%/(R). Although this is not a regular tempered distribution we may say, by notational convention, that it corresponds

to the formal ‘function-under-the-integral’ identity sign’(z) =25(z).

The scale space representation of f € .%/(R) is the scale-parametrized function f, € C*°(R) N ."(R)
defined by the convolution product f, = f * ¢,, with o € R and

1 1 22
Po(x) = oo exp <—202> .

b. Show that, in the sense of scale space theory, sign (x) = 2¢, ().

Evaluating the convolution integral (sign * ¢ )’ () boils down to substituting the generic test function ¢ € .#(R) under a by a 2-parameter
Gaussian, viz.

d(Y) = b2,0(y) = do(z — ),

which, using the distributional identity obtained under a, immediately produces sign’, (z) = 26(¢z,0) = 2¢¢ ().

oo
Lemma. Independent of o € R™" we have / ¢o(x)dr = 1.
—00

c. Prove: / " d)f,") (x)dx = (—=1)"n! for all o € R™, in which gbf,”) (x) = w

n
oo dr

Proof by induction. For n = 0 one obtains, after substituting y = o, the standard integral [*°_ ¢o (y) dy = [*7_ ¢(x) dz = 1, in which
¢(x) = ¢1(x) is the standard normalized Gaussian. Using the induction hypothesis for n € Zg a partial integration step yields
oo 1 oo oo
/ 2 @) do = [+ 6 @)] T+ ) / 2" 96" (@) dz = —(n+ D(=D)"nl = (- (n + 1)L
J—oo — —oo

=0



THE END



