EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 25, 2019. Time: 09:00-12:00. Place: AUD 13.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is not allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

a1. Show that \mathbb{Z}, equipped with default integer addition, constitutes a group.

Closure: The sum of two integers is an integer. Verification of group axioms:

- Associativity: For all $z_{1}, z_{2}, z_{3} \in \mathbb{Z}$ we have $\left(z_{1}+z_{2}\right)+z_{3}=z_{1}+\left(z_{2}+z_{3}\right) \doteq z_{1}+z_{2}+z_{3}$
- Identity: For all $z \in \mathbb{Z}$ we have $z+0=0+z=z$, so $0 \in \mathbb{Z}$ is the identity element.
- Inverse: For all $z \in \mathbb{Z}$ we have $z+(-z)=(-z)+z=0$, so $-z \in \mathbb{Z}$ is the inverse element of z.
a2. Show that $\mathbb{C} \backslash\{0\}$, equipped with default complex multiplication, constitutes a group.

Closure: The product of two nonzero complex numbers is a nonzero complex number. Verification of group axioms

- Associativity: For all $z_{1}, z_{2}, z_{3} \in \mathbb{C} \backslash\{0\}$ we have $\left(z_{1} z_{2}\right) z_{3}=z_{1}\left(z_{2} z_{3}\right) \doteq z_{1} z_{2} z_{3}$.
- Identity: For all $z \in \mathbb{C} \backslash\{0\}$ we have $z \times 1=1 \times z=z$, so $1 \in \mathbb{C} \backslash\{0\}$ is the identity element.
- Inverse: For all $z \in \mathbb{C} \backslash\{0\}$ we have $z(1 / z)=(1 / z) z=1$, so $1 / z \in \mathbb{Z}$ is the inverse element of z. Note that if $z=a+i b$ for some $a, b \in \mathbb{R}$ with $a^{2}+b^{2} \neq 0$, then $1 / z=(a-i b) /\left(a^{2}+b^{2}\right)$
a3. Show that the set $\mathbb{S} \doteq\{1,-1, i,-i\}$ constitutes a finite group under the same operation as in a2.
Observe that $\mathbb{S} \subset \mathbb{C} \backslash\{0\}$ is closed under multiplication. Furthermore, for each $u \in \mathbb{S}$ it is easy to see that $u^{-1} \in \mathbb{S}$ as well, e.g. by constructing the group multiplication table for \mathbb{S}. Consequently, $\mathbb{S} \subset \mathbb{C} \backslash\{0\}$ is a subgroup.

\times	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
-i	-i	i	1	-1

Definition. A group homomorphism between two groups $\{G, \circ\}$ and $\{H, \bullet\}$ is a mapping

$$
\phi: G \rightarrow H: g \mapsto \phi(g) \quad \text { such that } \quad \phi\left(g_{1} \circ g_{2}\right)=\phi\left(g_{1}\right) \bullet \phi\left(g_{2}\right) .
$$

By $e_{G} \in G, e_{H} \in H$ we denote the unit elements of G and $H ; g^{-1} \in G, h^{-1} \in H$ denote the inverses of $g \in G$ and $h \in H$.
b1. Show that $\phi\left(e_{G}\right)=e_{H}$.

Suppose $h=\phi(g) \in \phi(G) \subset H$, then $h=\phi(g)=\phi\left(g \circ e_{G}\right)=\phi(g) \bullet \phi\left(e_{G}\right)=h \bullet \phi\left(e_{G}\right)$, whence $\phi\left(e_{G}\right)=e_{\phi(G)}=e_{H}$. The last identity makes use of the fact that the identity element of a group (H in this case) equals that of any of its subgroups (here $\phi(G) \subset H$). To see this, multiply the identity $\phi(g) \bullet e_{H}=\phi(g)$ for all $g \in G$, which holds on $\phi(G) \subset H$, from the left with $h \bullet \phi(g)^{-1}$, in which $h \in H$ is arbitrary. This yields $\left(h \bullet \phi(g)^{-1}\right) \bullet\left(\phi(g) \bullet e_{H}\right)=h \bullet e_{H}=h$, which holds on $H \supset \phi(G)$.
b2. Show that $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.

Consider $e_{H}=\phi\left(e_{G}\right)=\phi\left(g \circ g^{-1}\right)=\phi(g) \bullet \phi\left(g^{-1}\right)$, which shows that $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.
c. Show that $\psi: \mathbb{Z} \rightarrow \mathbb{S}: n \mapsto \psi(n) \doteq i^{n}$ is a group homomorphism.

We have $\psi\left(n_{1}+n_{2}\right)=i^{n_{1}+n_{2}}=i^{n_{1}} i^{n_{2}}=\psi\left(n_{1}\right) \psi\left(n_{2}\right)$.
Definition. The kernel of ϕ is $\operatorname{Ker} \phi=\left\{g \in G \mid \phi(g)=e_{H}\right\}$. The image of ϕ is $\operatorname{Im} \phi=\{\phi(g) \in H \mid g \in G\}$.
Definition. A group homomorphism $\phi: G \rightarrow H$ is an epimorphism if it is surjective, i.e. if $\operatorname{Im} \phi=H$, and a monomorphism if it is injective, i.e. if $\operatorname{Ker} \phi=\left\{e_{G}\right\}$.
d1. Recall c. Specify $\operatorname{Ker} \psi$. Is ψ a monomorphism?

Since $i^{n}=1$ implies $n=4 k$ for some $k \in \mathbb{Z}$ we have $\operatorname{Ker} \psi=\{4 k \mid k \in \mathbb{Z}\}$. Thus ψ is not a monomorphism (unless one considers its arguments modulo 4).
d2. Recall c. Specify $\operatorname{Im} \psi$. Is ψ an epimorphism?
Since $i^{n}=i^{n \bmod 4}$ it suffices to consider $i^{4 k}=1, i^{4 k+1}=i, i^{4 k+2}=-1, i^{4 k+3}=-i$ for some $k \in \mathbb{Z}$. That is, $\operatorname{Im} \psi=$ $\{1,-1, i,-i\} \doteq \mathbb{S}$. With the specified codomain ψ is therefore indeed an epimorphism.

As an aside, $\psi: \mathbb{Z} \backslash 4 \mathbb{Z} \rightarrow \mathbb{S}: n \mapsto \psi(n) \doteq i^{n}$ is both a monomorphism as well as an epimorphism, i.e. an isomorphism. The notation $\mathbb{Z} \backslash 4 \mathbb{Z}$ is the set of equivalence classes $[n]$ determined by any integer $n \in \mathbb{Z}$, in which we identify $[n]=[m]$, or $n \equiv m$, for two integers $n, m \in \mathbb{Z}$ if $n=m \bmod 4$, i.e. if the difference $n-m$ is a multiple of 4 .

2. Linear Operator

Consider a real vector space V with basis $\left\{e_{1}, e_{2}\right\}$, and an operator $T: V \times V \rightarrow \mathbb{R}:(v, w) \mapsto T(v, w)$ with the following properties:

- T is bilinear;
- $T(v, w)=-T(w, v)$;
- $T\left(e_{1}, e_{2}\right)=1$.

Define $v=\sum_{i=1}^{2} v^{i} e_{i}$ and $w=\sum_{i=1}^{2} w^{i} e_{i}$, with $v^{i}, w^{i} \in \mathbb{R}, i, j=1,2$.
a. Show that $T(v, w)=\sum_{i=1}^{2} \sum_{j=1}^{2} \epsilon_{i j} v^{i} w^{j}$ for certain coefficients $\epsilon_{i j}$ and compute their values.

Inserting $v=\sum_{i=1}^{2} v^{i} e_{i}, w=\sum_{i=1}^{2} w^{i} e_{i}$ into $T(v, w)$ yields $T\left(\sum_{i=1}^{2} v^{i} e_{i}, \sum_{j=1}^{2} w^{j} e_{j}\right)=\sum_{i=1}^{2} \sum_{j=1}^{2} T\left(e_{i}, e_{j}\right) v^{i} w^{j}$, in which we have used bilinearity in the last step. Apparently $\epsilon_{i j}=T\left(e_{i}, e_{j}\right)$. This proves the existence of the stipulated coefficients. As for their values, note that $\epsilon_{i j}=T\left(e_{i}, e_{j}\right)=-T\left(e_{j}, e_{i}\right)=-\epsilon_{j i}$, whence $\epsilon_{11}=\epsilon_{22}=0$ and $\epsilon_{12}=-\epsilon_{21}=T\left(e_{1}, e_{2}\right)=1$.

Let \mathbb{M}_{n} denote the linear space of $n \times n$ square matrices A with entries $A_{i j} \in \mathbb{R}, 1 \leq i, j \leq n$. Consider the map $\mathscr{S}_{\lambda}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}: A \mapsto \mathscr{S}_{\lambda}(A)$, in which $\lambda \in \mathbb{R}$ is a parameter, given by

$$
\left(\mathscr{S}_{\lambda}(A)\right)_{i j}=\lambda\left(A_{i j}+A_{j i}\right) .
$$

We furthermore define the standard inner product for $A, B \in \mathbb{M}_{n}$ as follows:

$$
\langle A \mid B\rangle=\operatorname{trace}\left(A B^{T}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{i j}
$$

We call a linear operator $L \in \mathscr{L}(V, V)$ on a real inner product space V symmetric if $\langle L v \mid w\rangle=\langle v \mid L w\rangle$ for all $v, w \in V$. We call L a projection if $L \circ L=L$, meaning $L(L(v))=L(v)$ for all $v \in V$.
b1. Show that $\mathscr{S}_{\lambda} \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ is symmetric for any $\lambda \in \mathbb{R}$.
Consider

$$
\begin{aligned}
\left\langle\mathscr{S}_{\lambda}(A) \mid B\right\rangle & =\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\mathscr{S}_{\lambda}(A)\right)_{i j} B_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\lambda\left(A_{i j}+A_{j i}\right)\right) B_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda A_{i j} B_{i j}+\lambda A_{j i} B_{i j} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \lambda A_{i j} B_{i j}+\lambda A_{i j} B_{j i}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}\left(\lambda\left(B_{i j}+B_{j i}\right)\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}\left(\mathscr{S}_{\lambda}(B)\right)_{i j}=\left\langle A \mid \mathscr{S}_{\lambda}(B)\right\rangle .
\end{aligned}
$$

b2. For which $\lambda \in \mathbb{R}$ does $\mathscr{S}_{\lambda} \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ define a projection? Prove your answer.
Note that, for arbitrary $A \in \mathbb{M}_{n}$,

$$
\left(\mathscr{S}_{\lambda}\left(\mathscr{S}_{\lambda}(A)\right)\right)_{i j}=\lambda\left(\mathscr{S}_{\lambda}(A)_{i j}+\mathscr{S}_{\lambda}(A)_{j i}\right)=2 \lambda^{2}\left(A_{i j}+A_{j i}\right)=2 \lambda \mathscr{S}_{\lambda}(A)_{i j} .
$$

By definition of a projection we must therefore impose either $2 \lambda=1$, whence $\lambda=1 / 2$, or the trivial case, $\lambda=0$, corresponding to the trivial map $\mathscr{S}_{0}=0 \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$.

The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization vector field $\vec{M}(x, y, z, t)=\left(M_{x}(x, y, z, t), M_{y}(x, y, z, t), M_{z}(x, y, z, t)\right)$ induced in a patient placed in an MRI scanner with static magnetic field $\vec{B}_{0}=\left(0,0, B_{0}\right)$. In particular, the \mathbb{C}-valued transversal magnetization $m(x, y, z, t) \doteq M_{x}(x, y, z, t)+i M_{y}(x, y, z, t)$ satisfies the partial differential equation

$$
\frac{\partial m}{\partial t}=-i \omega_{0} m-\frac{m}{T_{2}}+D \Delta m
$$

in which $\Delta \doteq \partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$ is the Laplacian. The so-called Larmor frequency $\omega_{0}>0$ is a constant proportional to B_{0}. We likewise assume $D>0$, the diffusion coefficient, and $T_{2}>0$, the spin-spin relaxation time, to be constant.
a. Give the corresponding evolution equation for $\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)$ in the spatial Fourier domain.

We have

$$
\begin{equation*}
\frac{\partial \widehat{m}}{\partial t}=-\left(i \omega_{0}+\frac{1}{T_{2}}+D\|\omega\|^{2}\right) \widehat{m} \tag{5}
\end{equation*}
$$

in which $\|\omega\|^{2} \doteq \omega_{x}^{2}+\omega_{y}^{2}+\omega_{z}^{2}$.
At the start of the scan sequence, the system is initialized so that $m(x, y, z, t=0)=m_{0}(x, y, z)$, with Fourier transform $\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.
b. Determine $\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)$ as a function of time $t \geq 0$, given $\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.

We have

$$
\begin{equation*}
\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)=\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right) e^{-\left(i \omega_{0}+1 / T_{2}+D\|\omega\|^{2}\right) t} \tag{5}
\end{equation*}
$$

c. Show that $\mu(t) \doteq \int_{\mathbb{R}^{3}} m(x, y, z, t) d x d y d z$ is not preserved as a function of time by proving the following statements:
c1. $|\mu(t)|$ decays exponentially over time towards zero.
c2. $\mu(t) /|\mu(t)|$ rotates clockwise with uniform angular velocity around the origin of the \mathbb{C}-plane.
We have

$$
\mu(t)=\int_{\mathbb{R}^{3}} m(x, y, z, t) d x d y d z=\widehat{m}(0,0,0, t)=\widehat{m}_{0}(0,0,0) e^{-\left(i \omega_{0}+1 / T_{2}\right) t} .
$$

Both statements follow by inspection: $|\mu(t)|=\left|\widehat{m}_{0}(0,0,0)\right| e^{-t / T_{2}}$, resp. $\mu(t) /|\mu(t)|=e^{-i\left(\omega_{0} t-\phi\right)}$, in which the phase angle ϕ is defined such that $e^{i \phi} \stackrel{\text { def }}{=} \widehat{m}_{0}(0,0,0) /\left|\widehat{m}_{0}(0,0,0)\right|$.
(10)
d. Determine $m(x, y, z, t)$ as a function of time $t \geq 0$, given $m_{0}(x, y, z)$.

We have the solution implicitly in Fourier space, cf. problem b. Write it as

$$
\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)=e^{-\left(i \omega_{0}+1 / T_{2}\right) t} \widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right) \widehat{\phi}_{t}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)
$$

in which

$$
\widehat{\phi}_{t}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)=e^{-D \| \omega^{2} t} .
$$

In order to obtain its Fourier inverse we may apply one of the convolution theorems (the overall factor $e^{-\left(i \omega_{0}+1 / T_{2}\right) t}$ can be seen as a constant factor, since it does not involve $\omega=\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$, and can be separated by virtue of linearity of the Fourier transform):

$$
m(x, y, z, t)=e^{-\left(i \omega_{0}+1 / T_{2}\right) t} \mathscr{F}-1\left(\widehat{m}_{0} \widehat{\phi}_{t}\right)(x, y, z)=e^{-\left(i \omega_{0}+1 / T_{2}\right) t}\left(m_{0} * \phi_{t}\right)(x, y, z)
$$

in which

$$
\phi_{t}(x, y, z)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} e^{-D\|\omega\|^{2} t+i \omega \cdot x} d \omega=\frac{1}{\sqrt{4 \pi D t}^{3}} e^{-\frac{x^{2}+y^{2}+z^{2}}{4 D T}}
$$

Here we have abbreviated $\omega \cdot x=\omega_{x} x+\omega_{y} y+\omega_{z} z$.

4. Distribution Theory \& Scale Space

Consider the discontinuous function sign : $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto \operatorname{sign}(x)$, given by

$$
(\star) \quad \operatorname{sign}(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
0 & \text { if } x=0 \\
+1 & \text { if } x>0
\end{array}\right.
$$

Below we consider its derivative sign' in the sense of distribution theory, respectively scale space theory. a. Show that, in distributional sense, $\operatorname{sign}^{\prime}(x)=2 \delta(x)$, in which $\delta \in \mathscr{S}^{\prime}(\mathbb{R})$ is the Dirac function.

Hint: Use the proper definition for the regular tempered distribution $\operatorname{sign} \in \mathscr{S}^{\prime}(\mathbb{R})$ associated with (\star).

For any $\phi \in \mathscr{S}(\mathbb{R})$ we have $\operatorname{sign}^{\prime}(\phi)=-\operatorname{sign}\left(\phi^{\prime}\right)=-\int_{-\infty}^{\infty} \operatorname{sign}(y) \phi^{\prime}(y) d y=\int_{-\infty}^{0} \phi^{\prime}(y) d y-\int_{0}^{\infty} \phi^{\prime}(y) d y=2 \phi(0)=2 \delta(\phi)$, whence $\operatorname{sign}^{\prime}=2 \delta \in \mathscr{S}^{\prime}(\mathbb{R})$. Although this is not a regular tempered distribution we may say, by notational convention, that it corresponds to the formal 'function-under-the-integral' identity $\operatorname{sign}^{\prime}(x)=2 \delta(x)$.

The scale space representation of $f \in \mathscr{S}^{\prime}(\mathbb{R})$ is the scale-parametrized function $f_{\sigma} \in C^{\infty}(\mathbb{R}) \cap \mathscr{S}^{\prime}(\mathbb{R})$ defined by the convolution product $f_{\sigma}=f * \phi_{\sigma}$, with $\sigma \in \mathbb{R}^{+}$and

$$
\phi_{\sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}\right)
$$

(10) b. Show that, in the sense of scale space theory, $\operatorname{sign}_{\sigma}^{\prime}(x)=2 \phi_{\sigma}(x)$.

Evaluating the convolution integral $\left(\operatorname{sign} * \phi_{\sigma}\right)^{\prime}(x)$ boils down to substituting the generic test function $\phi \in \mathscr{S}(\mathbb{R})$ under a by a 2 -parameter Gaussian, viz.

$$
\phi(y) \rightarrow \phi_{x, \sigma}(y)=\phi_{\sigma}(x-y),
$$

which, using the distributional identity obtained under a, immediately produces $\operatorname{sign}_{\sigma}^{\prime}(x)=2 \delta\left(\phi_{x, \sigma}\right)=2 \phi_{\sigma}(x)$.
Lemma. Independent of $\sigma \in \mathbb{R}^{+}$we have $\int_{-\infty}^{\infty} \phi_{\sigma}(x) d x=1$.
c. Prove: $\int_{-\infty}^{\infty} x^{n} \phi_{\sigma}^{(n)}(x) d x=(-1)^{n} n$! for all $\sigma \in \mathbb{R}^{+}$, in which $\phi_{\sigma}^{(n)}(x)=\frac{d^{n} \phi_{\sigma}(x)}{d x^{n}}$.

Proof by induction. For $n=0$ one obtains, after substituting $y=\sigma x$, the standard integral $\int_{-\infty}^{\infty} \phi_{\sigma}(y) d y=\int_{-\infty}^{\infty} \phi(x) d x=1$, in which $\phi(x)=\phi_{1}(x)$ is the standard normalized Gaussian. Using the induction hypothesis for $n \in \mathbb{Z}_{0}$ a partial integration step yields

$$
\int_{-\infty}^{\infty} x^{n+1} \phi_{\sigma}^{(n+1)}(x) d x=\underbrace{\left[x^{n+1} \phi_{\sigma}^{(n)}(x)\right]_{-\infty}^{\infty}}_{=0}-(n+1) \int_{-\infty}^{\infty} x^{n} \phi_{\sigma}^{(n)}(x) d x=-(n+1)(-1)^{n} n!=(-1)^{(n+1)}(n+1)!.
$$

The End

