
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 25, 2019. Time: 09:00–12:00. Place: AUD 13.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator,
laptop, smartphone, or any other equipment, is not allowed.

• Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. GROUP HOMOMORPHISMS(30)

a1. Show that Z, equipped with default integer addition, constitutes a group.(5)

Closure: The sum of two integers is an integer. Verification of group axioms:

• Associativity: For all z1, z2, z3 ∈ Z we have (z1 + z2) + z3 = z1 + (z2 + z3)
.
= z1 + z2 + z3.

• Identity: For all z ∈ Z we have z + 0 = 0 + z = z, so 0 ∈ Z is the identity element.

• Inverse: For all z ∈ Z we have z + (−z) = (−z) + z = 0, so −z ∈ Z is the inverse element of z.

a2. Show that C\{0}, equipped with default complex multiplication, constitutes a group.(5)

Closure: The product of two nonzero complex numbers is a nonzero complex number. Verification of group axioms:

• Associativity: For all z1, z2, z3 ∈ C\{0} we have (z1z2)z3 = z1(z2z3)
.
= z1z2z3.

• Identity: For all z ∈ C\{0} we have z × 1 = 1× z = z, so 1 ∈ C\{0} is the identity element.

• Inverse: For all z ∈ C\{0} we have z(1/z) = (1/z)z = 1, so 1/z ∈ Z is the inverse element of z. Note that if z = a + ib for
some a, b ∈ R with a2 + b2 6= 0, then 1/z = (a− ib)/(a2 + b2).

a3. Show that the set S .
= {1,−1, i,−i} constitutes a finite group under the same operation as in a2.(5)

Observe that S ⊂ C\{0} is closed under multiplication. Furthermore, for each u ∈ S it is easy to see that u−1 ∈ S as well, e.g. by
constructing the group multiplication table for S. Consequently, S ⊂ C\{0} is a subgroup.

× 1 -1 i -i
1 1 -1 i -i
-1 -1 1 -i i
i i -i -1 1
-i -i i 1 -1



Definition. A group homomorphism between two groups {G, ◦} and {H, •} is a mapping

φ : G→ H : g 7→ φ(g) such that φ(g1 ◦ g2) = φ(g1) • φ(g2) .

By eG∈G, eH ∈H we denote the unit elements of G and H; g−1∈G, h−1∈H denote the inverses of
g∈G and h∈H .

b1. Show that φ(eG) = eH .(21
2 )

Suppose h = φ(g) ∈ φ(G) ⊂ H , then h = φ(g) = φ(g ◦ eG) = φ(g) • φ(eG) = h • φ(eG), whence φ(eG) = eφ(G) = eH . The last

identity makes use of the fact that the identity element of a group (H in this case) equals that of any of its subgroups (here φ(G) ⊂ H). To

see this, multiply the identity φ(g) • eH = φ(g) for all g ∈ G, which holds on φ(G) ⊂ H , from the left with h • φ(g)−1, in which h ∈ H
is arbitrary. This yields (h • φ(g)−1) • (φ(g) • eH) = h • eH = h, which holds on H ⊃ φ(G).

b2. Show that φ(g−1) = φ(g)−1.(21
2 )

Consider eH = φ(eG) = φ(g ◦ g−1) = φ(g) • φ(g−1), which shows that φ(g−1) = φ(g)−1.

c. Show that ψ : Z→ S : n 7→ ψ(n)
.
= in is a group homomorphism.(5)

We have ψ(n1 + n2) = in1+n2 = in1 in2 = ψ(n1)ψ(n2).

Definition. The kernel of φ is Kerφ = {g∈G |φ(g)=eH}. The image of φ is Imφ = {φ(g)∈H | g∈G}.

Definition. A group homomorphism φ : G→ H is an epimorphism if it is surjective, i.e. if Imφ = H ,
and a monomorphism if it is injective, i.e. if Kerφ = {eG}.

d1. Recall c. Specify Kerψ. Is ψ a monomorphism?(21
2 )

Since in = 1 implies n = 4k for some k ∈ Z we have Kerψ = {4k | k ∈ Z}. Thus ψ is not a monomorphism (unless one considers its

arguments modulo 4).

d2. Recall c. Specify Imψ. Is ψ an epimorphism?(21
2 )

Since in = in mod 4 it suffices to consider i4k = 1, i4k+1 = i, i4k+2 = −1, i4k+3 = −i for some k ∈ Z. That is, Imψ =
{1,−1, i,−i} .= S. With the specified codomain ψ is therefore indeed an epimorphism.

As an aside, ψ : Z\4Z → S : n 7→ ψ(n)
.
= in is both a monomorphism as well as an epimorphism, i.e. an isomorphism. The notation

Z\4Z is the set of equivalence classes [n] determined by any integer n ∈ Z, in which we identify [n] = [m], or n ≡ m, for two integers

n,m ∈ Z if n = m mod 4, i.e. if the difference n−m is a multiple of 4.

♣

2. LINEAR OPERATOR(20)

Consider a real vector space V with basis {e1, e2}, and an operator T : V ×V → R : (v, w) 7→ T (v, w)
with the following properties:

• T is bilinear;



• T (v, w) = −T (w, v);

• T (e1, e2) = 1.

Define v =
∑2

i=1 v
iei and w =

∑2
i=1w

iei, with vi, wi ∈ R, i, j = 1, 2.

a. Show that T (v, w) =
2∑
i=1

2∑
j=1

εijv
iwj for certain coefficients εij and compute their values.(10)

Inserting v =
∑2
i=1 v

iei, w =
∑2
i=1 w

iei into T (v, w) yields T (
∑2
i=1 v

iei,
∑2
j=1 w

jej) =
∑2
i=1

∑2
j=1 T (ei, ej)v

iwj , in which

we have used bilinearity in the last step. Apparently εij = T (ei, ej). This proves the existence of the stipulated coefficients. As for their

values, note that εij = T (ei, ej) = −T (ej , ei) = −εji, whence ε11 = ε22 = 0 and ε12 = −ε21 = T (e1, e2) = 1.

Let Mn denote the linear space of n×n square matrices A with entries Aij∈R, 1 ≤ i, j ≤ n. Consider
the map Sλ : Mn →Mn : A 7→ Sλ(A), in which λ ∈ R is a parameter, given by

(Sλ(A))ij = λ (Aij +Aji) .

We furthermore define the standard inner product for A,B ∈Mn as follows:

〈A|B〉 = trace (ABT ) =
n∑
i=1

n∑
j=1

AijBij .

We call a linear operator L∈L (V, V ) on a real inner product space V symmetric if 〈Lv|w〉 = 〈v|Lw〉
for all v, w ∈ V . We call L a projection if L ◦ L = L, meaning L(L(v)) = L(v) for all v ∈ V .

b1. Show that Sλ ∈ L (Mn,Mn) is symmetric for any λ ∈ R.(5)

Consider

〈Sλ(A)|B〉 =

n∑
i=1

n∑
j=1

(Sλ(A))ij Bij =

n∑
i=1

n∑
j=1

(λ (Aij +Aji))Bij =

n∑
i=1

n∑
j=1

λAijBij + λAjiBij

=
n∑
i=1

n∑
j=1

λAijBij + λAijBji =
n∑
i=1

n∑
j=1

Aij (λ (Bij +Bji)) =
n∑
i=1

n∑
j=1

Aij (Sλ(B))ij = 〈A|Sλ(B)〉 .

b2. For which λ ∈ R does Sλ ∈ L (Mn,Mn) define a projection? Prove your answer.(5)

Note that, for arbitrary A ∈ Mn,

(Sλ(Sλ(A)))ij = λ (Sλ(A)ij + Sλ(A)ji) = 2λ2 (Aij +Aji) = 2λSλ(A)ij .

By definition of a projection we must therefore impose either 2λ = 1, whence λ = 1/2, or the trivial case, λ = 0, corresponding to the

trivial map S0 = 0 ∈ L (Mn,Mn).

♣

3. PDE THEORY AND FOURIER ANALYSIS (EXAM FEBRUARY 1, 2017, PROBLEM 3)(25)



The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization
vector field ~M(x, y, z, t) = (Mx(x, y, z, t),My(x, y, z, t),Mz(x, y, z, t)) induced in a patient placed
in an MRI scanner with static magnetic field ~B0 = (0, 0, B0). In particular, the C-valued transversal
magnetization m(x, y, z, t)

.
= Mx(x, y, z, t) + iMy(x, y, z, t) satisfies the partial differential equation

∂m

∂t
= −iω0m−

m

T2
+D∆m,

in which ∆
.
= ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 is the Laplacian. The so-called Larmor frequency ω0> 0

is a constant proportional to B0. We likewise assume D> 0, the diffusion coefficient, and T2> 0, the
spin-spin relaxation time, to be constant.

a. Give the corresponding evolution equation for m̂(ωx, ωy, ωz, t) in the spatial Fourier domain.(5)

We have
∂m̂

∂t
= −

(
iω0 +

1

T2
+D‖ω‖2

)
m̂ ,

in which ‖ω‖2 .
= ω2

x + ω2
y + ω2

z .

At the start of the scan sequence, the system is initialized so that m(x, y, z, t= 0) = m0(x, y, z), with
Fourier transform m̂0(ωx, ωy, ωz).

b. Determine m̂(ωx, ωy, ωz, t) as a function of time t ≥ 0, given m̂0(ωx, ωy, ωz).(5)

We have
m̂(ωx, ωy , ωz , t) = m̂0(ωx, ωy , ωz) e

−(iω0+1/T2+D‖ω‖2)t .

c. Show that µ(t)
.
=
´
R3 m(x, y, z, t)dxdydz is not preserved as a function of time by proving the

following statements:

c1. |µ(t)| decays exponentially over time towards zero.(21
2 )

c2. µ(t)/|µ(t)| rotates clockwise with uniform angular velocity around the origin of the C-plane.(21
2 )

We have
µ(t) =

ˆ
R3
m(x, y, z, t)dxdydz = m̂(0, 0, 0, t) = m̂0(0, 0, 0) e

−(iω0+1/T2)t .

Both statements follow by inspection: |µ(t)| = |m̂0(0, 0, 0)| e−t/T2 , resp. µ(t)/|µ(t)| = e−i(ω0t−φ), in which the phase angle φ is

defined such that eiφ def
= m̂0(0, 0, 0)/|m̂0(0, 0, 0)|.

d. Determine m(x, y, z, t) as a function of time t ≥ 0, given m0(x, y, z).(10)

We have the solution implicitly in Fourier space, cf. problem b. Write it as

m̂(ωx, ωy , ωz , t) = e−(iω0+1/T2)t m̂0(ωx, ωy , ωz) φ̂t(ωx, ωy , ωz) ,

in which
φ̂t(ωx, ωy , ωz) = e−D‖ω‖

2t .

In order to obtain its Fourier inverse we may apply one of the convolution theorems (the overall factor e−(iω0+1/T2)t can be seen as a
constant factor, since it does not involve ω = (ωx, ωy , ωz), and can be separated by virtue of linearity of the Fourier transform):

m(x, y, z, t) = e−(iω0+1/T2)t F−1
(
m̂0 φ̂t

)
(x, y, z) = e−(iω0+1/T2)t (m0 ∗ φt)(x, y, z) ,



in which

φt(x, y, z) =
1

(2π)3

ˆ
R3
e−D‖ω‖

2t+iω·xdω =
1

√
4πDt

3
e−

x2+y2+z2

4DT .

Here we have abbreviated ω · x = ωxx+ ωyy + ωzz.

♣

4. DISTRIBUTION THEORY & SCALE SPACE(25)

Consider the discontinuous function sign : R→ R : x 7→ sign (x), given by

(?) sign(x) =


−1 if x<0
0 if x=0

+1 if x>0

Below we consider its derivative sign′ in the sense of distribution theory, respectively scale space theory.

a. Show that, in distributional sense, sign′(x)=2δ(x), in which δ∈S ′(R) is the Dirac function.(10)

Hint: Use the proper definition for the regular tempered distribution sign∈S ′(R) associated with (?).

For any φ ∈ S (R) we have sign′(φ) = −sign(φ′) = −
´∞
−∞ sign(y)φ′(y) dy =

´ 0
−∞ φ′(y) dy −

´∞
0 φ′(y) dy = 2φ(0) = 2δ(φ),

whence sign′ = 2δ ∈ S ′(R). Although this is not a regular tempered distribution we may say, by notational convention, that it corresponds

to the formal ‘function-under-the-integral’ identity sign′(x)=2δ(x).

The scale space representation of f ∈S ′(R) is the scale-parametrized function fσ ∈C∞(R) ∩S ′(R)
defined by the convolution product fσ=f ∗ φσ, with σ∈R+ and

φσ(x) =
1

σ
√

2π
exp

(
−1

2

x2

σ2

)
.

b. Show that, in the sense of scale space theory, sign′σ(x) = 2φσ(x).(10)

Evaluating the convolution integral (sign ∗ φσ)′ (x) boils down to substituting the generic test function φ ∈ S (R) under a by a 2-parameter
Gaussian, viz.

φ(y)→ φx,σ(y) = φσ(x− y) ,

which, using the distributional identity obtained under a, immediately produces sign′σ(x) = 2δ(φx,σ) = 2φσ(x).

Lemma. Independent of σ∈R+ we have
ˆ ∞
−∞

φσ(x) dx = 1.

c. Prove:
ˆ ∞
−∞

xn φ(n)σ (x) dx = (−1)nn! for all σ∈R+, in which φ(n)σ (x) =
dnφσ(x)

dxn
.(5)

Proof by induction. For n = 0 one obtains, after substituting y = σx, the standard integral
´∞
−∞ φσ(y) dy =

´∞
−∞ φ(x) dx = 1, in which

φ(x) = φ1(x) is the standard normalized Gaussian. Using the induction hypothesis for n ∈ Z0 a partial integration step yields
ˆ ∞
−∞

xn+1φ
(n+1)
σ (x) dx =

[
xn+1φ

(n)
σ (x)

]∞
−∞︸ ︷︷ ︸

=0

−(n+ 1)

ˆ ∞
−∞

xn φ
(n)
σ (x) dx = −(n+ 1)(−1)nn! = (−1)(n+1)(n+ 1)! .



THE END


