EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Friday January 25, 2019. Time: 09:00-12:00. Place: AUD 13.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is not allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. Group Homomorphisms

a1. Show that \mathbb{Z}, equipped with default integer addition, constitutes a group.
a2. Show that $\mathbb{C} \backslash\{0\}$, equipped with default complex multiplication, constitutes a group.
a3. Show that the set $\mathbb{S} \doteq\{1,-1, i,-i\}$ constitutes a finite group under the same operation as in a2.
Definition. A group homomorphism between two groups $\{G, \circ\}$ and $\{H, \bullet\}$ is a mapping

$$
\phi: G \rightarrow H: g \mapsto \phi(g) \quad \text { such that } \quad \phi\left(g_{1} \circ g_{2}\right)=\phi\left(g_{1}\right) \bullet \phi\left(g_{2}\right) .
$$

By $e_{G} \in G, e_{H} \in H$ we denote the unit elements of G and $H ; g^{-1} \in G, h^{-1} \in H$ denote the inverses of $g \in G$ and $h \in H$.
b1. Show that $\phi\left(e_{G}\right)=e_{H}$.
b2. Show that $\phi\left(g^{-1}\right)=\phi(g)^{-1}$.
c. Show that $\psi: \mathbb{Z} \rightarrow \mathbb{S}: n \mapsto \psi(n) \doteq i^{n}$ is a group homomorphism.

Definition. The kernel of ϕ is $\operatorname{Ker} \phi=\left\{g \in G \mid \phi(g)=e_{H}\right\}$. The image of $\phi \operatorname{is} \operatorname{Im} \phi=\{\phi(g) \in H \mid g \in G\}$.

Definition. A group homomorphism $\phi: G \rightarrow H$ is an epimorphism if it is surjective, i.e. if $\operatorname{Im} \phi=H$, and a monomorphism if it is injective, i.e. if $\operatorname{Ker} \phi=\left\{e_{G}\right\}$.
d1. Recall c. Specify $\operatorname{Ker} \psi$. Is ψ a monomorphism?
d2. Recall c. Specify $\operatorname{Im} \psi$. Is ψ an epimorphism?

2. Linear Operator

Consider a real vector space V with basis $\left\{e_{1}, e_{2}\right\}$, and an operator $T: V \times V \rightarrow \mathbb{R}:(v, w) \mapsto T(v, w)$ with the following properties:

- T is bilinear;
- $T(v, w)=-T(w, v)$;
- $T\left(e_{1}, e_{2}\right)=1$.

Define $v=\sum_{i=1}^{2} v^{i} e_{i}$ and $w=\sum_{i=1}^{2} w^{i} e_{i}$, with $v^{i}, w^{i} \in \mathbb{R}, i, j=1,2$.
a. Show that $T(v, w)=\sum_{i=1}^{2} \sum_{j=1}^{2} \epsilon_{i j} v^{i} w^{j}$ for certain coefficients $\epsilon_{i j}$ and compute their values.

Let \mathbb{M}_{n} denote the linear space of $n \times n$ square matrices A with entries $A_{i j} \in \mathbb{R}, 1 \leq i, j \leq n$. Consider the map $\mathscr{S}_{\lambda}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}: A \mapsto \mathscr{S}_{\lambda}(A)$, in which $\lambda \in \mathbb{R}$ is a parameter, given by

$$
\left(\mathscr{S}_{\lambda}(A)\right)_{i j}=\lambda\left(A_{i j}+A_{j i}\right) .
$$

We furthermore define the standard inner product for $A, B \in \mathbb{M}_{n}$ as follows:

$$
\langle A \mid B\rangle=\operatorname{trace}\left(A B^{T}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{i j}
$$

We call a linear operator $L \in \mathscr{L}(V, V)$ on a real inner product space V symmetric if $\langle L v \mid w\rangle=\langle v \mid L w\rangle$ for all $v, w \in V$. We call L a projection if $L \circ L=L$, meaning $L(L(v))=L(v)$ for all $v \in V$.
b1. Show that $\mathscr{S}_{\lambda} \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ is symmetric for any $\lambda \in \mathbb{R}$.
b2. For which $\lambda \in \mathbb{R}$ does $\mathscr{S}_{\lambda} \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ define a projection? Prove your answer.
3. PDE Theory and Fourier Analysis (Exam February 1, 2017, Problem 3)

The so-called Bloch-Torrey equations describe the evolution of the 3 components of the magnetization vector field $\vec{M}(x, y, z, t)=\left(M_{x}(x, y, z, t), M_{y}(x, y, z, t), M_{z}(x, y, z, t)\right)$ induced in a patient placed in an MRI scanner with static magnetic field $\vec{B}_{0}=\left(0,0, B_{0}\right)$. In particular, the \mathbb{C}-valued transversal magnetization $m(x, y, z, t) \doteq M_{x}(x, y, z, t)+i M_{y}(x, y, z, t)$ satisfies the partial differential equation

$$
\frac{\partial m}{\partial t}=-i \omega_{0} m-\frac{m}{T_{2}}+D \Delta m
$$

in which $\Delta \doteq \partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}+\partial^{2} / \partial z^{2}$ is the Laplacian. The so-called Larmor frequency $\omega_{0}>0$ is a constant proportional to B_{0}. We likewise assume $D>0$, the diffusion coefficient, and $T_{2}>0$, the spin-spin relaxation time, to be constant.
(5) a. Give the corresponding evolution equation for $\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)$ in the spatial Fourier domain.

At the start of the scan sequence, the system is initialized so that $m(x, y, z, t=0)=m_{0}(x, y, z)$, with Fourier transform $\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.
b. Determine $\widehat{m}\left(\omega_{x}, \omega_{y}, \omega_{z}, t\right)$ as a function of time $t \geq 0$, given $\widehat{m}_{0}\left(\omega_{x}, \omega_{y}, \omega_{z}\right)$.
c. Show that $\mu(t) \doteq \int_{\mathbb{R}^{3}} m(x, y, z, t) d x d y d z$ is not preserved as a function of time by proving the following statements:
c1. $|\mu(t)|$ decays exponentially over time towards zero.
c2. $\mu(t) /|\mu(t)|$ rotates clockwise with uniform angular velocity around the origin of the \mathbb{C}-plane.
d. Determine $m(x, y, z, t)$ as a function of time $t \geq 0$, given $m_{0}(x, y, z)$.

4. Distribution Theory \& Scale Space

Consider the discontinuous function sign : $\mathbb{R} \rightarrow \mathbb{R}: x \mapsto \operatorname{sign}(x)$, given by

$$
(\star) \quad \operatorname{sign}(x)=\left\{\begin{array}{cl}
-1 & \text { if } x<0 \\
0 & \text { if } x=0 \\
+1 & \text { if } x>0
\end{array}\right.
$$

Below we consider its derivative sign' in the sense of distribution theory, respectively scale space theory.
(10) a. Show that, in distributional sense, $\operatorname{sign}^{\prime}(x)=2 \delta(x)$, in which $\delta \in \mathscr{S}^{\prime}(\mathbb{R})$ is the Dirac function.

Hint: Use the proper definition for the regular tempered distribution sign $\in \mathscr{S}^{\prime}(\mathbb{R})$ associated with (\star).
The scale space representation of $f \in \mathscr{S}^{\prime}(\mathbb{R})$ is the scale-parametrized function $f_{\sigma} \in C^{\infty}(\mathbb{R}) \cap \mathscr{S}^{\prime}(\mathbb{R})$ defined by the convolution product $f_{\sigma}=f * \phi_{\sigma}$, with $\sigma \in \mathbb{R}^{+}$and

$$
\phi_{\sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2} \frac{x^{2}}{\sigma^{2}}\right) .
$$

b. Show that, in the sense of scale space theory, $\operatorname{sign}_{\sigma}^{\prime}(x)=2 \phi_{\sigma}(x)$.

Lemma. Independent of $\sigma \in \mathbb{R}^{+}$we have $\int_{-\infty}^{\infty} \phi_{\sigma}(x) d x=1$.
c. Prove: $\int_{-\infty}^{\infty} x^{n} \phi_{\sigma}^{(n)}(x) d x=(-1)^{n} n$! for all $\sigma \in \mathbb{R}^{+}$, in which $\phi_{\sigma}^{(n)}(x)=\frac{d^{n} \phi_{\sigma}(x)}{d x^{n}}$.

