EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10 & 8D020. Date: Wednesday January 27 2016. Time: 13:30–16:30. Place: AUD 12.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, smartphone, or any other equipment, is *not* allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

(25) 1. GROUP

Definition 1 A group is a collection G together with an internal operation

$$\circ: G \times G \longrightarrow G: (x, y) \mapsto x \circ y,$$

such that

- the operation is associative, i.e. $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in G$,
- there exists an identity element $e \in G$ such that $x \circ e = e \circ x = x$ for all $x \in G$, and
- for each $x \in G$ there exists an inverse element x^{inv} such that $x^{inv} \circ x = x \circ x^{inv} = e$.

Definition 2 Recall Definition 1. If, in addition, $x \circ y = y \circ x$ for all $x, y \in G$, then the group is called *commutative*, or *abelian*.

- (10) **a.** Prove the following properties for a group G:
 - The identity element $e \in G$ is unique.
 - The identity element equals its own inverse: $e^{inv} = e$.
 - The inverse x^{inv} of a given element $x \in G$ is unique.
 - The inverse of the inverse of a given element $x \in G$ reproduces that element: $(x^{inv})^{inv} = x$.

The identity element $e \in G$ is unique: Suppose $e_1 \neq e_2$ are both identity elements in G. Consider the identity $x \circ e = e \circ x = x$, which holds for all $x \in G$, twice, once for $(e, x) = (e_1, e_2)$ and once for $(e, x) = (e_2, e_1)$. This yields $e_2 \circ e_1 = e_1 \circ e_2 = e_2$, but at the same time $e_1 \circ e_2 = e_2 \circ e_1 = e_1$, which is a contradiction.

The identity element equals its own inverse: Take x = e in the second axiom. This yields $e \circ e = e$, which, by the last axiom, defines $e = e^{inv}$ to be its own inverse.

The inverse x^{inv} of a given element $x \in G$ is unique: Suppose $y \neq z$ are both inverses of $x \in G$. On the one hand we have $y \circ x \circ z = y \circ (x \circ z) = y \circ e = y$. But at the same time we have $y \circ x \circ z = (y \circ x) \circ z = e \circ z = z$. This is a contradiction.

The inverse of the inverse of a given element $x \in G$ reproduces that element: For ease of notation, denote the inverse of x by $y = x^{inv}$. Then $x = e \circ x = (y^{inv} \circ y) \circ x = y^{inv} \circ (y \circ x) = y^{inv} \circ e = y^{inv}$, i.e. $x = (x^{inv})^{inv}$.

(15) **b.** Consider the set of 4×4 matrices

$$G = \left\{ \left(\begin{array}{cc} \mathbf{I} & -\Theta \\ \Theta & \mathbf{I} \end{array} \right) \middle| \Theta \stackrel{\text{def}}{=} \left(\begin{array}{cc} \theta_{11} & \theta_{12} \\ 0 & \theta_{22} \end{array} \right) \ , \ \mathbf{I} \stackrel{\text{def}}{=} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \ , \ \theta_{ij} \in \mathbb{R} \right\} \ .$$

Which constraint on the parameters $\theta_{11}, \theta_{12}, \theta_{22}$ should we impose in order for G to define an abelian group under matrix multiplication?

Taking Ψ to be a matrix of the same form as Θ , but with entries ψ_{ij} instead of θ_{ij} (i, j = 1, 2), we have

$$\begin{pmatrix} I & -\Theta \\ \Theta & I \end{pmatrix} \begin{pmatrix} I & -\Psi \\ \Psi & I \end{pmatrix} = \begin{pmatrix} I - \Theta \Psi & -(\Theta + \Psi) \\ \Theta + \Psi & I + \Theta \Psi \end{pmatrix} ,$$

thus $\Theta \Psi$ must be the 2×2 null matrix. Note that the required constraint must be formulated in terms of a condition on the generic form of Θ . Working this out for the given parametric form of Θ and Ψ yields

$$\begin{pmatrix} \theta_{11} & \theta_{12} \\ 0 & \theta_{22} \end{pmatrix} \begin{pmatrix} \psi_{11} & \psi_{12} \\ 0 & \psi_{22} \end{pmatrix} = \begin{pmatrix} \theta_{11}\psi_{11} & \theta_{11}\psi_{12} + \theta_{12}\psi_{22} \\ 0 & \theta_{22}\psi_{22} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

This must hold for *all* coefficients, whence (take $\Theta = \Psi$ for instance) it follows that $\theta_{11} = \theta_{22} = 0$, leaving θ_{12} undetermined, whence

$$\Theta \stackrel{\text{def}}{=} \left(\begin{array}{cc} 0 & \theta \\ 0 & 0 \end{array} \right) \,,$$

*

with $\theta \in \mathbb{R}$.

(**20**) **2.** METRIC SPACE

Definition 3 Let V be a vector space over K. A *distance* on V is a nondegenerate positive definite symmetric mapping $d: V \times V \longrightarrow \mathbb{R}$ such that for all $u, v, w \in V, \lambda \in \mathbb{K}$,

- $d(v, w) \ge 0$ and d(v, w) = 0 if and only if v = w,
- d(v, w) = d(w, v),
- $d(v,w) \le d(v,u) + d(u,w)$.

We consider (2+1)-dimensional Euclidean spacetime $M = \mathbb{R}^3 = \{(\vec{x}, t) | x = (x_1, x_2) \in \mathbb{R}^2 \text{ and } t \in \mathbb{R}\}$, interpreted as a vector space with the usual definitions of vector addition and scalar multiplication, and furnished with a bivariate operator

$$d: M \times M \to \mathbb{R}: ((\vec{x}, t), (\vec{y}, u)) \mapsto d((\vec{x}, t), (\vec{y}, u)) \stackrel{\text{def}}{=} \begin{cases} \|\vec{y} - \vec{x}\| & \text{if } t = u, \\ |u - t| & \text{if } t \neq u, \end{cases}$$

in which $\|\vec{y} - \vec{x}\| = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2}$, i.e. the Euclidean distance between \vec{x} and \vec{y} . You may take it for granted that this Euclidean distance does indeed define a distance according to Definition 3.

In order to verify whether d defines a distance, please answer all problems under a, b and c below.

- (10) **a.** Prove or disprove the first axiom (positivity and nondegeneracy).
- (5) **b.** Prove or disprove the second axiom (symmetry).
- (5) **c.** Prove or disprove the third axiom (triangle inequality).

The mapping d fails to be a distance. Symmetry and positive nondegeneracy are fulfilled:

a. d ((x,t), (y,u)) ≥ 0; in particular equality clearly implies t = u, so that 0 = d ((x,t), (y,u)) = ||y - x||, which holds iff x = y;
b. d ((x,t), (y,u)) = d ((y,u), (x,t)) by virtue of the symmetries ||y - x|| = ||x - y|| and |u - t| = |t - u|.

However, the triangle inequality fails, for consider the distance between two distinct spacetime points for equal time t.

c. On the one hand we have $d((\vec{y},t),(\vec{x},t)) = \|\vec{y} - \vec{x}\| \stackrel{\text{def}}{=} \Delta > 0$. If (\vec{z},v) is any other spacetime point with $v \neq t$, then $d((\vec{x},t),(\vec{z},v)) + d((\vec{z},v),(\vec{y},t)) = 2|v-t|$. This may be smaller than Δ , viz. if $|v-t| < \Delta/2$.

÷

(20) **3.** DISTRIBUTION THEORY

Definition 4 The class $S(\mathbb{R}^n)$ of smooth test functions of rapid decay, $\phi : \mathbb{R}^n \longrightarrow \mathbb{K}$, a.k.a. Schwartz functions, is defined as follows:

$$\phi \in \mathcal{S}(\mathbb{R}^n)$$
 iff $\phi \in C^{\infty}(\mathbb{R}^n)$ and $\sup_{x \in \mathbb{R}^n} |x^{\alpha} \nabla_{\beta} \phi(x)| < \infty$,

for all multi-indices α and β .

Theorem 1 If $T \in \mathcal{S}'(\mathbb{R}^n)$, then there exist a constant c > 0 and multi-indices α, β such that

$$|T[\phi]| \le c \sup_{x \in \mathbb{R}^n} |x^{\alpha} \nabla_{\beta} \phi(x)|.$$

(10) **a.** Prove Theorem 1 for the case of a regular tempered distribution $T \stackrel{\text{def}}{=} T_f$, i.e. a tempered distribution of the form

$$T_f[\phi] = \int_{\mathbb{R}^n} f(x) \,\phi(x) \,dx \,,$$

with $f \in L^1(\mathbb{R}^n)$.

Using the Hölder inequality (in †) we find

$$|T_f[\phi]| = |\int_{\mathbb{R}^n} f(x) \phi(x) \, dx| \le \int_{\mathbb{R}^n} |f(x) \phi(x)| \, dx = ||f \phi||_1 \stackrel{\dagger}{\le} ||f||_1 \, ||\phi||_{\infty} = c \sup_{x \in \mathbb{R}^n} |\phi(x)|,$$

in which $c = \|f\|_1$. Note that we may take trivial multi-indices in the estimation in this case: $\alpha = \beta = 0 \in \mathbb{N}^n$.

(10) **b.** Show that it also holds if $T \stackrel{\text{def}}{=} \nabla_{\alpha} T_f$, i.e. for any α -partial derivative of a tempered distribution.

The space $S(\mathbb{R}^n)$ is closed under differentiation. This means that $(-1)^{\beta} \nabla_{\beta} \phi \in S(\mathbb{R}^n)$ for all multi-indices β . Since, by definition, $\nabla_{\beta} T_f[\phi] = (-1)^{\beta} T_f[\nabla_{\beta} \phi]$ we have, using the conclusion of problem a, $|\nabla_{\beta} T_f[\phi]| = |T_f[\nabla_{\beta} \phi]| \leq c \sup_{x \in \mathbb{R}^n} |\nabla_{\beta} \phi(x)|$ for some $c \in \mathbb{R}$ and given β . Note that we may take α trivial in Theorem 1 in this case.

÷

(20) 4. DISTRIBUTION THEORY & FOURIER ANALYSIS (EXAM APRIL 11, 2014, PROBLEM 4)

The Fourier transform $\widehat{T} \in \mathscr{S}'(\mathbb{R}^n)$ of a distribution $T \in \mathscr{S}'(\mathbb{R}^n)$ is defined as follows:

$$\widehat{T}(\phi) = T(\widehat{\phi})$$
 for all test functions $\phi \in \mathscr{S}(\mathbb{R}^n)$, (\star)

in which

$$\widehat{\phi}(\omega) = \int_{\mathbb{R}^n} e^{-i\omega \cdot x} \, \phi(x) \, dx \, .$$

The purpose of this problem is to motivate this definition.

To this end, consider any function $f : \mathbb{R}^n \to \mathbb{C}$ of polynomial growth for which the Fourier integral

$$\widehat{f}(\omega) = \int_{\mathbb{R}^n} e^{-i\omega \cdot x} f(x) \, dx$$

is well-defined and yields a function $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ of polynomial growth. Denote by $T_f \in \mathscr{S}'(\mathbb{R}^n)$ the corresponding *regular* tempered distribution, i.e.

$$T_f(\phi) = \int_{\mathbb{R}^n} f(x) \,\phi(x) \,dx$$

for all test functions $\phi \in \mathscr{S}(\mathbb{R}^n)$. It is then natural to define $\widehat{T}_f \stackrel{\text{def}}{=} T_{\widehat{f}}$, i.e.

$$\widehat{T}_f(\phi) \stackrel{\text{def}}{=} \int_{\mathbb{R}^n} \widehat{f}(\xi) \, \phi(\xi) \, d\xi \,. \qquad (*)$$

(10) **a.** Show that this definition (*) implies $\widehat{T}_f(\phi) = T_f(\widehat{\phi})$, consistent with (*), for any $\phi \in \mathscr{S}(\mathbb{R}^n)$.

(*Hint*: In (*) apply the Fourier reconstruction formula in the following form: $\phi(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\xi \cdot x} \widehat{\phi}(x) dx$.)

Following the hint (in the quality marked by *) we write

$$\widehat{T}_{f}(\phi) \stackrel{\text{def}}{=} T_{\widehat{f}}(\phi) \stackrel{\text{def}}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \, \phi(\xi) \, d\xi \stackrel{*}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \left(\frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} e^{i\xi \cdot x} \, \widehat{\phi}(x) \, dx \right) \, d\xi \, .$$

Interchanging the order of integration this is seen to be equivalent to

$$\widehat{T}_f(\phi) = \int_{\mathbb{R}^n} \left(\frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \widehat{f}(\xi) e^{i\xi \cdot x} \, d\xi \right) \widehat{\phi}(x) \, dx \stackrel{\circ}{=} \int_{\mathbb{R}^n} f(x) \, \widehat{\phi}(x) \, dx = T_f(\widehat{\phi}) \, .$$

In \circ the Fourier reconstruction formula has been used once more, this time for the function f.

This result justifies the general definition (\star) , which also holds if $T \in \mathscr{S}'(\mathbb{R}^n)$ is not regular.

As an example, consider the (non-regular) Dirac point distribution $\delta \in \mathscr{S}'(\mathbb{R}^n)$, defined by $\delta(\phi) = \phi(0)$ for all $\phi \in \mathscr{S}(\mathbb{R}^n)$.

(10) **b.** Use the general definition (\star) to prove that $\hat{\delta} = T_1$. Here $T_1 \in \mathscr{S}'(\mathbb{R}^n)$ is the regular tempered distribution corresponding to the constant function $1 : \mathbb{R}^n \to \mathbb{C} : x \mapsto 1(x) = 1$.

Using the distributional definition of the Fourier transform (in \star) we find that

$$\widehat{\delta}(\phi) \stackrel{\star}{=} \delta(\widehat{\phi}) \stackrel{\text{def}}{=} \widehat{\phi}(0) \stackrel{\dagger}{=} \int_{\mathbb{R}^n} \phi(x) \, dx \stackrel{\text{def}}{=} \int_{\mathbb{R}^n} \mathcal{1}(x) \, \phi(x) \, dx \stackrel{\text{def}}{=} T_{\mathcal{I}}(\phi) \, .$$

Note that † uses a special case of the definition of the Fourier transform, viz.

$$\widehat{\phi}(\omega) = \int_{\mathbb{R}^n} e^{-i\omega \cdot x} \phi(x) \, dx \,,$$

for $\omega = 0 \in \mathbb{R}^n$.

+

(15) 5. FOURIER ANALYSIS & PDE THEORY

Consider the initial value problem

$$\begin{cases} \frac{\partial u}{\partial t} &= c\frac{\partial u}{\partial x}\\ u(x,0) &= f(x) \end{cases}$$

for a function $u : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, for a given $f \in C^1(\mathbb{R})$ and constant parameter $c \in \mathbb{R}$.

Find the solution for u in terms of f and c by Fourier transformation

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \,\widehat{u}(\omega,t) \, d\omega \, .$$

You may assume that f has a well-defined Fourier transform \hat{f} .

Substituting the Fourier formula yields

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \left(\frac{d\widehat{u}}{dt}(\omega, t) - i\omega c\widehat{u}(\omega, t) \right) d\omega = 0 \,,$$

$$\frac{1}{2\pi}\int_{-\infty}^{\infty}e^{i\omega x}\left(\widehat{u}(\omega,0)-\widehat{f}(\omega)\right)d\omega=0\,.$$

This holds iff

$$\left\{ \begin{array}{rcl} \displaystyle \frac{d\widehat{u}}{dt}(\omega,t)-i\omega c\widehat{u}(\omega,t)&=&0\,,\\ \\ \displaystyle \widehat{u}(\omega,0)&=&\widehat{f}(\omega) \end{array} \right.$$

The solution is $\widehat{u}(\omega,t)=\widehat{f}(\omega)\,e^{i\omega ct}.$ Fourier inversion yields

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega(x+ct)} \widehat{f}(\omega) \, d\omega = f(x+ct) \, .$$

This reveals that the initial condition is a snapshot of a travelling wave with profile f propagating with velocity c (in negative x-direction if c > 0, in positive x-direction if c < 0, and "frozen" if c = 0).

THE END

with