EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10 & 8D020. Date: Wednesday January 27 2016. Time: 13:30-16:30. Place: AUD 12.

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

e The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.

e The use of course notes is allowed, provided it is in immaculate state. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, smartphone, or any other equipment, is not allowed.

Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

(25) 1. Group

Definition 1 A group is a collection G together with an internal operation
o:GxG—G:(xr,y)—xo0y,

such that

e the operation is associative, i.e. (toy)oz =x o (yoz) forall z,y,z € G,
e there exists an identity element e € G suchthat z oe = e o x = x for all x € G, and
inv

e for each z € (G there exists an inverse element '™ such that 2™ oz = z o 2™ = e.

Definition 2 Recall Definition 1. If, in addition, x oy = y o x for all x,y € G, then the group is called
commutative, or abelian.

(10) a. Prove the following properties for a group G:

The identity element e € G is unique.

The identity element equals its own inverse: ™ = e.

The inverse '™

of a given element z € G is unique.

The inverse of the inverse of a given element =z € G reproduces that element: (z™)" = z.
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The identity element e € G is unique: Suppose e1 # eg are both identity elements in G. Consider the identity z o e = e o x = x, which
holds for all z € G, twice, once for (e, z) = (e1, e2) and once for (e, z) = (ez2, e1). This yields ez 0 €1 = e1 0 e2 = e2, but at the same
time e; 0 eg = e2 0 €1 = eq, which is a contradiction.

The identity element equals its own inverse: Take x = e in the second axiom. This yields e o e = e, which, by the last axiom, defines
e = €™ to be its own inverse.

The inverse '™ of a given element z € G is unique: Suppose y # z are both inverses of € G. On the one hand we have y o x 0 z =
yo (roz)=yoe=y. Butatthe same time we have y oz 0 2 = (y o ) 0 2 = e 0 z = z. This is a contradiction.

The inverse of the inverse of a given element = € G reproduces that element: For ease of notation, denote the inverse of « by y = «'™. Then

r=cox=(yY"oy)ox=9y"o(yox)=y™oe=1y™, ie x = (z)

b. Consider the set of 4 x 4 matrices
_ 1 —@ dﬁf 911 912 dif 1 0 -
(40 (1) (3 ) e

Which constraint on the parameters 611, 812, #22 should we impose in order for GG to define an abelian
group under matrix multiplication?

Taking W to be a matrix of the same form as ©, but with entries v;; instead of 0;; (¢, 5 = 1, 2), we have
I —© I -0\ [(I-0F —(0+10)
(€] 1 v 1 - O+ v 14+ 6v ’

thus © W must be the 2% 2 null matrix. Note that the required constraint must be formulated in terms of a condition on the generic form of ©.
Working this out for the given parametric form of © and ¥ yields

( 011 612 ) ( P11 Y12 ) _( 01111 O11%12 + 012922 )_( 0 0 )
0 62 0 22 ) 0 022122 “\0 0 /)"

This must hold for all coefficients, whence (take © = W for instance) it follows that 811 = 022 = 0, leaving 612 undetermined, whence

def (0 0
(5 5)

with 8 € R.

2. METRIC SPACE

Definition 3 Let V' be a vector space over K. A distance on V is a nondegenerate positive definite
symmetric mapping d : V' x V' — R such that for all u,v,w € V, A € K,

e d(v,w) > 0and d(v,w) = 0if and only if v = w,
o d(v,w) = d(w,v),

e d(v,w) <d(v,u) + d(u,w).
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We consider (2+1)-dimensional Euclidean spacetime M = R? = {(Z,t) | 2= (21, 22) €R? and t eR},
interpreted as a vector space with the usual definitions of vector addition and scalar multiplication, and
furnished with a bivariate operator

o o o o def y—Z| ift=u,
4005 = R (@0, 0) - (@0, o) = {7

in which |7 — Z|| = \/(y1 — 21)% + (y2 — 2)2, i.e. the Euclidean distance between Z and ¢. You may
take it for granted that this Euclidean distance does indeed define a distance according to Definition 3.

In order to verify whether d defines a distance, please answer all problems under a, b and ¢ below.
a. Prove or disprove the first axiom (positivity and nondegeneracy).

b. Prove or disprove the second axiom (symmetry).

c¢. Prove or disprove the third axiom (triangle inequality).

The mapping d fails to be a distance. Symmetry and positive nondegeneracy are fulfilled:

a. d((Z,t), (¢,w)) > 0; in particular equality clearly implies ¢ = u, so that 0 = d ((Z, t), (¥, v)) = ||¥ — Z||, which holds iff Z = ¥

b. d((Z,t), (¥, u)) = d((¢,u), (&,t)) by virtue of the symmetries ||§ — Z|| = || — ¥|| and |u — ¢| = |t — u].

However, the triangle inequality fails, for consider the distance between two distinct spacetime points for equal time ¢.

= ||y — LA > o0 1f (Z,v) is any other spacetime point with v # ¢, then

c. On the one hand we have d ((¥,t), (Z,t))
J,t)) = 2|v — t|. This may be smaller than A, viz. if |v — ¢| < A/2.

(
d((@,1), (Z,v)) + d((Z,v), (41))

&

3. DISTRIBUTION THEORY

Definition 4 The class S(R"™) of smooth test functions of rapid decay, ¢ : R" — K, a.k.a. Schwartz
functions, is defined as follows:

peSMR") iff ¢ C®R") and sup [z%Vgd(x)| < oo,
TER™

for all multi-indices « and £.

Theorem 1 If T € S'(R"™), then there exist a constant ¢ > 0 and multi-indices «, 3 such that

T [¢]| < csup |[2*Vgp(x)|.
z€eR?
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a. Prove Theorem 1 for the case of a regular tempered distribution 7' & T, i.e. a tempered distribution
of the form

Tyl¢] = A f(x) ¢(x) dx,
with f € LY(R").
Using the Holder inequality (in {) we find

T
Tyl =1 [ s@ota)dsl < [ 5@ et)lde = £ ol < Il 6l = ¢ sup o(e)]

in which ¢ = || f||1. Note that we may take trivial multi-indices in the estimation in this case: « = 8 = 0 € N™.

b. Show that it also holds if T % Vo1, i.e. for any a-partial derivative of a tempered distribution.

The space S(R™) is closed under differentiation. This means that (—1)#Vg¢ € S(R™) for all multi-indices 8. Since, by definition,
VTyl¢] = (=1)PT¢[Vg¢] we have, using the conclusion of problem a, [V 5Ty[¢]| = |T¢[Vg¢]| < c supycrn |Vgo(z)| for some

c € R and given /3. Note that we may take « trivial in Theorem 1 in this case.

&

4. DISTRIBUTION THEORY & FOURIER ANALYSIS (EXAM APRIL 11, 2014, PROBLEM 4)

The Fourier transform T € .9 (R™) of a distribution T € .9’ (R") is defined as follows:
T(¢) = T($) for all test functions ¢ € . (R"), (%)

in which
o) = [ el de.

The purpose of this problem is to motivate this definition.

To this end, consider any function f : R™ — C of polynomial growth for which the Fourier integral

~

fo)= [ e pa)ds

is well-defined and yields a function f: R™ — C of polynomial growth. Denote by 7'y € .#’(R") the
corresponding regular tempered distribution, i.e.

Ty(6)= | fla)olx)da

for all test functions ¢ € .%’(R"). It is then natural to define ff &f Tt ie.

THo) < | FO o) de. ()

R

a. Show that this definition (x) implies T}(qb) = Tf(qAS), consistent with (), for any ¢ € .7 (R").
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(Hint: In () apply the Fourier reconstruction formula in the following form: ¢(&) =

Following the hint (in the quality marked by *) we write

702102 [ FQo©az [ Fo (g [ o) de.

Interchanging the order of integration this is seen to be equivalent to

~ 1 N . ~ ~ ~
10 = [ (o [, 7O de) dorde = [ 1) bta) e =150,
R" (271') R™ R™
In o the Fourier reconstruction formula has been used once more, this time for the function f.

This result justifies the general definition (x), which also holds if 7' € .’/ (R™) is not regular.

As an example, consider the (non-regular) Dirac point distribution § € ./(R"), defined by 6(¢) = ¢(0)
for all ¢ € .7 (R").

b. Use the general definition (x) to prove that §=T;. Here T; € ./ (R™) is the regular tempered
distribution corresponding to the constant function 1 : R" - C:z +— 1(z) = 1.

Using the distributional definition of the Fourier transform (in x) we find that

50) 26 L o0 L [ o@ar [ 1@ o)z Ti(0).

Note that T uses a special case of the definition of the Fourier transform, viz.

Bw) = [ o e,

forw =0 € R™.
&
5. FOURIER ANALYSIS & PDE THEORY
Consider the initial value problem
ou ou
g — ==
{ ot ox
u(w,O) = f(l’) )

for a function u : R x R — R, for a given f € C*(R) and constant parameter ¢ € R.

Find the solution for « in terms of f and ¢ by Fourier transformation
1 [ .
u(z,t) = / e u(w, t) dw .
2 J_ s
You may assume that f has a well-defined Fourier transform f

Substituting the Fourier formula yields

1 oo du
— et (—u(w,t) — iwcﬁ(w,t)) dw =0,
27 ) _ oo dt



with

i i iwz [~ Y _
e U(w,0) — f(w))dw=0.
21 ) _ o
This holds iff
) —iwei(w,t) = 0
— (w, t) — iwct(w, = ,
dt N N
(w,0) = flw).
The solution is @ (w, t) = A(w) e’wct Fourier inversion yields

u(z,t) = 5- / et flu)du = fla+ct).

™

This reveals that the initial condition is a snapshot of a travelling wave with profile f propagating with velocity ¢ (in negative z-direction if

¢ > 0, in positive z-direction if ¢ < 0, and “frozen” if ¢ = 0).

THE END



