EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10 \& 8D020. Date: Wednesday January 27 2016. Time: 13:30-16:30. Place: AUD 12.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, smartphone, or any other equipment, is not allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. Group

Definition 1 A group is a collection G together with an internal operation

$$
\circ: G \times G \longrightarrow G:(x, y) \mapsto x \circ y,
$$

such that

- the operation is associative, i.e. $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in G$,
- there exists an identity element $e \in G$ such that $x \circ e=e \circ x=x$ for all $x \in G$, and
- for each $x \in G$ there exists an inverse element $x^{\text {inv }}$ such that $x^{\text {inv }} \circ x=x \circ x^{\text {inv }}=e$.

Definition 2 Recall Definition 1. If, in addition, $x \circ y=y \circ x$ for all $x, y \in G$, then the group is called commutative, or abelian.
a. Prove the following properties for a group G :

- The identity element $e \in G$ is unique.
- The identity element equals its own inverse: $e^{\mathrm{inv}}=e$.
- The inverse $x^{\text {inv }}$ of a given element $x \in G$ is unique.
- The inverse of the inverse of a given element $x \in G$ reproduces that element: $\left(x^{\text {inv }}\right)^{\text {inv }}=x$.

The identity element $e \in G$ is unique: Suppose $e_{1} \neq e_{2}$ are both identity elements in G. Consider the identity $x \circ e=e \circ x=x$, which holds for all $x \in G$, twice, once for $(e, x)=\left(e_{1}, e_{2}\right)$ and once for $(e, x)=\left(e_{2}, e_{1}\right)$. This yields $e_{2} \circ e_{1}=e_{1} \circ e_{2}=e_{2}$, but at the same time $e_{1} \circ e_{2}=e_{2} \circ e_{1}=e_{1}$, which is a contradiction.

The identity element equals its own inverse: Take $x=e$ in the second axiom. This yields $e \circ e=e$, which, by the last axiom, defines $e=e^{\text {inv }}$ to be its own inverse.

The inverse $x^{\text {inv }}$ of a given element $x \in G$ is unique: Suppose $y \neq z$ are both inverses of $x \in G$. On the one hand we have $y \circ x \circ z=$ $y \circ(x \circ z)=y \circ e=y$. But at the same time we have $y \circ x \circ z=(y \circ x) \circ z=e \circ z=z$. This is a contradiction.

The inverse of the inverse of a given element $x \in G$ reproduces that element: For ease of notation, denote the inverse of x by $y=x^{\text {inv }}$. Then $x=e \circ x=\left(y^{\mathrm{inv}} \circ y\right) \circ x=y^{\mathrm{inv}} \circ(y \circ x)=y^{\mathrm{inv}} \circ e=y^{\mathrm{inv}}$, i.e. $x=\left(x^{\mathrm{inv}}\right)^{\mathrm{inv}}$.
b. Consider the set of 4×4 matrices

$$
G=\left\{\left(\begin{array}{cc}
\mathrm{I} & -\Theta \tag{15}\\
\Theta & \mathrm{I}
\end{array}\right) \left\lvert\, \Theta \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\theta_{11} & \theta_{12} \\
0 & \theta_{22}
\end{array}\right)\right., \mathrm{I} \stackrel{\text { def }}{=}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \theta_{i j} \in \mathbb{R}\right\}
$$

Which constraint on the parameters $\theta_{11}, \theta_{12}, \theta_{22}$ should we impose in order for G to define an abelian group under matrix multiplication?

Taking Ψ to be a matrix of the same form as Θ, but with entries $\psi_{i j}$ instead of $\theta_{i j}(i, j=1,2)$, we have

$$
\left(\begin{array}{cc}
\mathrm{I} & -\Theta \\
\Theta & \mathrm{I}
\end{array}\right)\left(\begin{array}{cc}
\mathrm{I} & -\Psi \\
\Psi & \mathrm{I}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{I}-\Theta \Psi & -(\Theta+\Psi) \\
\Theta+\Psi & \mathrm{I}+\Theta \Psi
\end{array}\right)
$$

thus $\Theta \Psi$ must be the 2×2 null matrix. Note that the required constraint must be formulated in terms of a condition on the generic form of Θ. Working this out for the given parametric form of Θ and Ψ yields

$$
\left(\begin{array}{cc}
\theta_{11} & \theta_{12} \\
0 & \theta_{22}
\end{array}\right)\left(\begin{array}{cc}
\psi_{11} & \psi_{12} \\
0 & \psi_{22}
\end{array}\right)=\left(\begin{array}{cc}
\theta_{11} \psi_{11} & \theta_{11} \psi_{12}+\theta_{12} \psi_{22} \\
0 & \theta_{22} \psi_{22}
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

This must hold for all coefficients, whence (take $\Theta=\Psi$ for instance) it follows that $\theta_{11}=\theta_{22}=0$, leaving θ_{12} undetermined, whence

$$
\Theta \stackrel{\text { def }}{=}\left(\begin{array}{ll}
0 & \theta \\
0 & 0
\end{array}\right)
$$

with $\theta \in \mathbb{R}$.
2. Metric Space

Definition 3 Let V be a vector space over \mathbb{K}. A distance on V is a nondegenerate positive definite symmetric mapping $d: V \times V \longrightarrow \mathbb{R}$ such that for all $u, v, w \in V, \lambda \in \mathbb{K}$,

- $d(v, w) \geq 0$ and $d(v, w)=0$ if and only if $v=w$,
- $d(v, w)=d(w, v)$,
- $d(v, w) \leq d(v, u)+d(u, w)$.

We consider (2+1)-dimensional Euclidean spacetime $M=\mathbb{R}^{3}=\left\{(\vec{x}, t) \mid x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right.$ and $\left.t \in \mathbb{R}\right\}$, interpreted as a vector space with the usual definitions of vector addition and scalar multiplication, and furnished with a bivariate operator

$$
d: M \times M \rightarrow \mathbb{R}:((\vec{x}, t),(\vec{y}, u)) \mapsto d((\vec{x}, t),(\vec{y}, u)) \stackrel{\text { def }}{=} \begin{cases}\|\vec{y}-\vec{x}\| & \text { if } t=u, \\ |u-t| & \text { if } t \neq u,\end{cases}
$$

in which $\|\vec{y}-\vec{x}\|=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}}$, i.e. the Euclidean distance between \vec{x} and \vec{y}. You may take it for granted that this Euclidean distance does indeed define a distance according to Definition 3.

In order to verify whether d defines a distance, please answer all problems under a, b and c below.
(10) a. Prove or disprove the first axiom (positivity and nondegeneracy).
(5) b. Prove or disprove the second axiom (symmetry).
c. Prove or disprove the third axiom (triangle inequality).

The mapping d fails to be a distance. Symmetry and positive nondegeneracy are fulfilled:
a. $d((\vec{x}, t),(\vec{y}, u)) \geq 0$; in particular equality clearly implies $t=u$, so that $0=d((\vec{x}, t),(\vec{y}, u))=\|\vec{y}-\vec{x}\|$, which holds iff $\vec{x}=\vec{y}$;
b. $d((\vec{x}, t),(\vec{y}, u))=d((\vec{y}, u),(\vec{x}, t))$ by virtue of the symmetries $\|\vec{y}-\vec{x}\|=\|\vec{x}-\vec{y}\|$ and $|u-t|=|t-u|$.

However, the triangle inequality fails, for consider the distance between two distinct spacetime points for equal time t.
c. On the one hand we have $d((\vec{y}, t),(\vec{x}, t))=\|\vec{y}-\vec{x}\| \stackrel{\text { def }}{=} \Delta>0$. If (\vec{z}, v) is any other spacetime point with $v \neq t$, then $d((\vec{x}, t),(\vec{z}, v))+d((\vec{z}, v),(\vec{y}, t))=2|v-t|$. This may be smaller than Δ, viz. if $|v-t|<\Delta / 2$.
3. Distribution Theory

Definition 4 The class $\mathcal{S}\left(\mathbb{R}^{n}\right)$ of smooth test functions of rapid decay, $\phi: \mathbb{R}^{n} \longrightarrow \mathbb{K}$, a.k.a. Schwartz functions, is defined as follows:

$$
\phi \in \mathcal{S}\left(\mathbb{R}^{n}\right) \quad \text { iff } \quad \phi \in C^{\infty}\left(\mathbb{R}^{n}\right) \quad \text { and } \quad \sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \nabla_{\beta} \phi(x)\right|<\infty,
$$

for all multi-indices α and β.

Theorem 1 If $T \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, then there exist a constant $c>0$ and multi-indices α, β such that

$$
|T[\phi]| \leq c \sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \nabla_{\beta} \phi(x)\right| .
$$

(10) a. Prove Theorem 1 for the case of a regular tempered distribution $T \stackrel{\text { def }}{=} T_{f}$, i.e. a tempered distribution of the form

$$
T_{f}[\phi]=\int_{\mathbb{R}^{n}} f(x) \phi(x) d x
$$

with $f \in L^{1}\left(\mathbb{R}^{n}\right)$.
Using the Hölder inequality (in \dagger) we find

$$
\left|T_{f}[\phi]\right|=\left|\int_{\mathbb{R}^{n}} f(x) \phi(x) d x\right| \leq \int_{\mathbb{R}^{n}}|f(x) \phi(x)| d x=\|f \phi\|_{1} \stackrel{\dagger}{\leq}\|f\|_{1}\|\phi\|_{\infty}=c \sup _{x \in \mathbb{R}^{n}}|\phi(x)|,
$$

in which $c=\|f\|_{1}$. Note that we may take trivial multi-indices in the estimation in this case: $\alpha=\beta=0 \in \mathbb{N}^{n}$.
(10) b. Show that it also holds if $T \stackrel{\text { def }}{=} \nabla_{\alpha} T_{f}$, i.e. for any α-partial derivative of a tempered distribution.

The space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is closed under differentiation. This means that $(-1)^{\beta} \nabla_{\beta} \phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ for all multi-indices β. Since, by definition, $\nabla_{\beta} T_{f}[\phi]=(-1)^{\beta} T_{f}\left[\nabla_{\beta} \phi\right]$ we have, using the conclusion of problem a, $\left|\nabla_{\beta} T_{f}[\phi]\right|=\left|T_{f}\left[\nabla_{\beta} \phi\right]\right| \leq c \sup _{x \in \mathbb{R}^{n}}\left|\nabla_{\beta} \phi(x)\right|$ for some $c \in \mathbb{R}$ and given β. Note that we may take α trivial in Theorem 1 in this case.

The Fourier transform $\widehat{T} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of a distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined as follows:

$$
\widehat{T}(\phi)=T(\widehat{\phi}) \quad \text { for all test functions } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

in which

$$
\widehat{\phi}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} \phi(x) d x
$$

The purpose of this problem is to motivate this definition.
To this end, consider any function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth for which the Fourier integral

$$
\widehat{f}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} f(x) d x
$$

is well-defined and yields a function $\widehat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth. Denote by $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ the corresponding regular tempered distribution, i.e.

$$
T_{f}(\phi)=\int_{\mathbb{R}^{n}} f(x) \phi(x) d x
$$

for all test functions $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. It is then natural to define $\widehat{T}_{f} \stackrel{\text { def }}{=} T_{\widehat{f}}$, i.e.

$$
\begin{equation*}
\widehat{T}_{f}(\phi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \phi(\xi) d \xi \tag{*}
\end{equation*}
$$

(10) a. Show that this definition $(*)$ implies $\widehat{T}_{f}(\phi)=T_{f}(\widehat{\phi})$, consistent with (\star), for any $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.
(Hint: In $(*)$ apply the Fourier reconstruction formula in the following form: $\phi(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i \xi \cdot x} \widehat{\phi}(x) d x$.)
Following the hint (in the quality marked by $*$) we write

$$
\widehat{T}_{f}(\phi) \stackrel{\text { def }}{=} T_{\widehat{f}}(\phi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \phi(\xi) d \xi \stackrel{*}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi)\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i \xi \cdot x} \widehat{\phi}(x) d x\right) d \xi .
$$

Interchanging the order of integration this is seen to be equivalent to

$$
\widehat{T}_{f}(\phi)=\int_{\mathbb{R}^{n}}\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{i \xi \cdot x} d \xi\right) \widehat{\phi}(x) d x \doteq \int_{\mathbb{R}^{n}} f(x) \widehat{\phi}(x) d x=T_{f}(\widehat{\phi}) .
$$

In \circ the Fourier reconstruction formula has been used once more, this time for the function f.
This result justifies the general definition (\star), which also holds if $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is not regular.
As an example, consider the (non-regular) Dirac point distribution $\delta \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$, defined by $\delta(\phi)=\phi(0)$ for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.
(10) b. Use the general definition (\star) to prove that $\hat{\delta}=T_{1}$. Here $T_{1} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is the regular tempered distribution corresponding to the constant function $1: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto 1(x)=1$.

Using the distributional definition of the Fourier transform (in \star) we find that

$$
\widehat{\delta}(\phi) \stackrel{\star}{=} \delta(\widehat{\phi}) \stackrel{\text { def }}{=} \widehat{\phi}(0) \stackrel{\dagger}{=} \int_{\mathbb{R}^{n}} \phi(x) d x \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} 1(x) \phi(x) d x \stackrel{\text { def }}{=} T_{1}(\phi)
$$

Note that \dagger uses a special case of the definition of the Fourier transform, viz.

$$
\widehat{\phi}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} \phi(x) d x
$$

for $\omega=0 \in \mathbb{R}^{n}$.

5. Fourier Analysis \& PDE Theory

Consider the initial value problem

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t} & =c \frac{\partial u}{\partial x} \\
u(x, 0) & =f(x),
\end{aligned}\right.
$$

for a function $u: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, for a given $f \in C^{1}(\mathbb{R})$ and constant parameter $c \in \mathbb{R}$.
Find the solution for u in terms of f and c by Fourier transformation

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} \widehat{u}(\omega, t) d \omega
$$

You may assume that f has a well-defined Fourier transform \widehat{f}.

Substituting the Fourier formula yields

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x}\left(\frac{d \widehat{u}}{d t}(\omega, t)-i \omega c \widehat{u}(\omega, t)\right) d \omega=0
$$

with

$$
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x}(\widehat{u}(\omega, 0)-\widehat{f}(\omega)) d \omega=0
$$

This holds iff

$$
\left\{\begin{array}{ccc}
\frac{d \widehat{u}}{d t}(\omega, t)-i \omega c \widehat{u}(\omega, t) & = & 0 \\
\widehat{u}(\omega, 0) & = & \widehat{f}(\omega)
\end{array}\right.
$$

The solution is $\widehat{u}(\omega, t)=\widehat{f}(\omega) e^{i \omega c t}$. Fourier inversion yields

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega(x+c t)} \widehat{f}(\omega) d \omega=f(x+c t)
$$

This reveals that the initial condition is a snapshot of a travelling wave with profile f propagating with velocity c (in negative x-direction if $c>0$, in positive x-direction if $c<0$, and "frozen" if $c=0$).

