
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10 & 8D020. Date: Wednesday January 27 2016. Time: 13:30–16:30. Place: AUD 12.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 5 problems. The maximum credit for each item is indicated in the margin.

• The use of course notes is allowed, provided it is in immaculate state. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, smartphone, or any other equipment, is not allowed.

• Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. GROUP(25)

Definition 1 A group is a collection G together with an internal operation

◦ : G×G −→ G : (x, y) 7→ x ◦ y ,

such that

• the operation is associative, i.e. (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ G,

• there exists an identity element e ∈ G such that x ◦ e = e ◦ x = x for all x ∈ G, and

• for each x ∈ G there exists an inverse element xinv such that xinv ◦ x = x ◦ xinv = e.

Definition 2 Recall Definition 1. If, in addition, x ◦ y = y ◦ x for all x, y ∈ G, then the group is called
commutative, or abelian.

a. Prove the following properties for a group G:(10)

• The identity element e ∈ G is unique.

• The identity element equals its own inverse: einv = e.

• The inverse xinv of a given element x ∈ G is unique.

• The inverse of the inverse of a given element x ∈ G reproduces that element: (xinv)inv = x.



The identity element e ∈ G is unique: Suppose e1 6= e2 are both identity elements in G. Consider the identity x ◦ e = e ◦ x = x, which
holds for all x ∈ G, twice, once for (e, x) = (e1, e2) and once for (e, x) = (e2, e1). This yields e2 ◦ e1 = e1 ◦ e2 = e2, but at the same
time e1 ◦ e2 = e2 ◦ e1 = e1, which is a contradiction.

The identity element equals its own inverse: Take x = e in the second axiom. This yields e ◦ e = e, which, by the last axiom, defines
e = einv to be its own inverse.

The inverse xinv of a given element x ∈ G is unique: Suppose y 6= z are both inverses of x ∈ G. On the one hand we have y ◦ x ◦ z =
y ◦ (x ◦ z) = y ◦ e = y. But at the same time we have y ◦ x ◦ z = (y ◦ x) ◦ z = e ◦ z = z. This is a contradiction.

The inverse of the inverse of a given element x ∈ G reproduces that element: For ease of notation, denote the inverse of x by y = xinv. Then

x = e ◦ x = (yinv ◦ y) ◦ x = yinv ◦ (y ◦ x) = yinv ◦ e = yinv, i.e. x = (xinv)inv.

b. Consider the set of 4×4 matrices(15)

G=

{(
I −Θ
Θ I

)∣∣∣∣Θ def
=

(
θ11 θ12

0 θ22

)
, I def

=

(
1 0
0 1

)
, θij ∈ R

}
.

Which constraint on the parameters θ11, θ12, θ22 should we impose in order for G to define an abelian
group under matrix multiplication?

Taking Ψ to be a matrix of the same form as Θ, but with entries ψij instead of θij (i, j = 1, 2), we have(
I −Θ
Θ I

)(
I −Ψ
Ψ I

)
=

(
I−ΘΨ −(Θ + Ψ)
Θ + Ψ I + ΘΨ

)
,

thus ΘΨ must be the 2×2 null matrix. Note that the required constraint must be formulated in terms of a condition on the generic form of Θ.
Working this out for the given parametric form of Θ and Ψ yields(

θ11 θ12
0 θ22

)(
ψ11 ψ12

0 ψ22

)
=

(
θ11ψ11 θ11ψ12 + θ12ψ22

0 θ22ψ22

)
=

(
0 0
0 0

)
.

This must hold for all coefficients, whence (take Θ = Ψ for instance) it follows that θ11 = θ22 = 0, leaving θ12 undetermined, whence

Θ
def
=

(
0 θ
0 0

)
,

with θ ∈ R.

♣

2. METRIC SPACE(20)

Definition 3 Let V be a vector space over K. A distance on V is a nondegenerate positive definite
symmetric mapping d : V × V −→ R such that for all u, v, w ∈ V , λ ∈ K,

• d(v, w) ≥ 0 and d(v, w) = 0 if and only if v = w,

• d(v, w) = d(w, v),

• d(v, w) ≤ d(v, u) + d(u,w).



We consider (2+1)-dimensional Euclidean spacetimeM = R3 =
{

(~x, t) |x=(x1, x2)∈R2 and t∈R
}

,
interpreted as a vector space with the usual definitions of vector addition and scalar multiplication, and
furnished with a bivariate operator

d : M ×M → R : ((~x, t), (~y, u)) 7→ d ((~x, t), (~y, u))
def
=

{
‖~y − ~x‖ if t = u,
|u− t| if t 6= u,

in which ‖~y− ~x‖ =
√

(y1 − x1)2 + (y2 − x2)2, i.e. the Euclidean distance between ~x and ~y. You may
take it for granted that this Euclidean distance does indeed define a distance according to Definition 3.

In order to verify whether d defines a distance, please answer all problems under a, b and c below.

a. Prove or disprove the first axiom (positivity and nondegeneracy).(10)

b. Prove or disprove the second axiom (symmetry).(5)

c. Prove or disprove the third axiom (triangle inequality).(5)

The mapping d fails to be a distance. Symmetry and positive nondegeneracy are fulfilled:

a. d ((~x, t), (~y, u)) ≥ 0; in particular equality clearly implies t = u, so that 0 = d ((~x, t), (~y, u)) = ‖~y − ~x‖, which holds iff ~x = ~y;

b. d ((~x, t), (~y, u)) = d ((~y, u), (~x, t)) by virtue of the symmetries ‖~y − ~x‖ = ‖~x− ~y‖ and |u− t| = |t− u|.

However, the triangle inequality fails, for consider the distance between two distinct spacetime points for equal time t.

c. On the one hand we have d ((~y, t), (~x, t)) = ‖~y − ~x‖ def
= ∆ > 0. If (~z, v) is any other spacetime point with v 6= t, then

d ((~x, t), (~z, v)) + d ((~z, v), (~y, t)) = 2|v − t|. This may be smaller than ∆, viz. if |v − t| < ∆/2.

♣

3. DISTRIBUTION THEORY(20)

Definition 4 The class S(Rn) of smooth test functions of rapid decay, φ : Rn −→ K, a.k.a. Schwartz
functions, is defined as follows:

φ ∈ S(Rn) iff φ ∈ C∞(Rn) and sup
x∈Rn

|xα∇βφ(x)| <∞ ,

for all multi-indices α and β.

Theorem 1 If T ∈ S ′(Rn), then there exist a constant c > 0 and multi-indices α, β such that

|T [φ] | ≤ c sup
x∈Rn

|xα∇βφ(x)| .



a. Prove Theorem 1 for the case of a regular tempered distribution T def
= Tf , i.e. a tempered distribution(10)

of the form
Tf [φ] =

∫
Rn
f(x)φ(x) dx ,

with f ∈ L1(Rn).

Using the Hölder inequality (in †) we find

|Tf [φ]| = |
∫
Rn

f(x)φ(x) dx| ≤
∫
Rn
|f(x)φ(x)| dx = ‖f φ‖1

†
≤ ‖f‖1 ‖φ‖∞ = c sup

x∈Rn
|φ(x)| ,

in which c = ‖f‖1. Note that we may take trivial multi-indices in the estimation in this case: α = β = 0 ∈ Nn.

b. Show that it also holds if T def
= ∇αTf , i.e. for any α-partial derivative of a tempered distribution.(10)

The space S(Rn) is closed under differentiation. This means that (−1)β∇βφ ∈ S(Rn) for all multi-indices β. Since, by definition,

∇βTf [φ] = (−1)βTf [∇βφ] we have, using the conclusion of problem a, |∇βTf [φ]| = |Tf [∇βφ]| ≤ c supx∈Rn |∇βφ(x)| for some

c ∈ R and given β. Note that we may take α trivial in Theorem 1 in this case.

♣

4. DISTRIBUTION THEORY & FOURIER ANALYSIS (EXAM APRIL 11, 2014, PROBLEM 4)(20)

The Fourier transform T̂ ∈ S ′(Rn) of a distribution T ∈ S ′(Rn) is defined as follows:

T̂ (φ) = T (φ̂) for all test functions φ ∈ S (Rn), (?)

in which
φ̂(ω) =

∫
Rn
e−iω·x φ(x) dx .

The purpose of this problem is to motivate this definition.

To this end, consider any function f : Rn → C of polynomial growth for which the Fourier integral

f̂(ω) =

∫
Rn
e−iω·x f(x) dx

is well-defined and yields a function f̂ : Rn → C of polynomial growth. Denote by Tf ∈S ′(Rn) the
corresponding regular tempered distribution, i.e.

Tf (φ) =

∫
Rn
f(x)φ(x) dx

for all test functions φ ∈ S (Rn). It is then natural to define T̂f
def
= T

f̂
, i.e.

T̂f (φ)
def
=

∫
Rn
f̂(ξ)φ(ξ) dξ . (∗)

a. Show that this definition (∗) implies T̂f (φ) = Tf (φ̂), consistent with (?), for any φ ∈ S (Rn).(10)



(Hint: In (∗) apply the Fourier reconstruction formula in the following form: φ(ξ) =
1

(2π)n

∫
Rn

eiξ·x φ̂(x) dx.)

Following the hint (in the quality marked by ∗) we write

T̂f (φ)
def
= T

f̂
(φ)

def
=

∫
Rn

f̂(ξ)φ(ξ) dξ
∗
=

∫
Rn

f̂(ξ)

(
1

(2π)n

∫
Rn

eiξ·x φ̂(x) dx

)
dξ .

Interchanging the order of integration this is seen to be equivalent to

T̂f (φ) =

∫
Rn

(
1

(2π)n

∫
Rn

f̂(ξ)eiξ·x dξ

)
φ̂(x) dx

◦
=

∫
Rn

f(x) φ̂(x) dx = Tf (φ̂) .

In ◦ the Fourier reconstruction formula has been used once more, this time for the function f .

This result justifies the general definition (?), which also holds if T ∈ S ′(Rn) is not regular.

As an example, consider the (non-regular) Dirac point distribution δ ∈ S ′(Rn), defined by δ(φ) = φ(0)
for all φ ∈ S (Rn).

b. Use the general definition (?) to prove that δ̂ = T1 . Here T1 ∈ S ′(Rn) is the regular tempered(10)
distribution corresponding to the constant function 1 : Rn → C : x 7→ 1 (x) = 1.

Using the distributional definition of the Fourier transform (in ?) we find that

δ̂(φ)
?
= δ(φ̂)

def
= φ̂(0)

†
=

∫
Rn

φ(x) dx
def
=

∫
Rn

1 (x)φ(x) dx
def
= T1 (φ) .

Note that † uses a special case of the definition of the Fourier transform, viz.

φ̂(ω) =

∫
Rn

e−iω·xφ(x) dx ,

for ω = 0 ∈ Rn.

♣

5. FOURIER ANALYSIS & PDE THEORY(15)

Consider the initial value problem {
∂u

∂t
= c

∂u

∂x
u(x, 0) = f(x) ,

for a function u : R× R→ R, for a given f ∈ C1(R) and constant parameter c ∈ R.

Find the solution for u in terms of f and c by Fourier transformation

u(x, t) =
1

2π

∫ ∞
−∞

eiωx û(ω, t) dω .

You may assume that f has a well-defined Fourier transform f̂ .

Substituting the Fourier formula yields

1

2π

∫ ∞
−∞

eiωx
(
dû

dt
(ω, t)− iωcû(ω, t)

)
dω = 0 ,



with
1

2π

∫ ∞
−∞

eiωx
(
û(ω, 0)− f̂(ω)

)
dω = 0 .

This holds iff 
dû

dt
(ω, t)− iωcû(ω, t) = 0 ,

û(ω, 0) = f̂(ω) .

The solution is û(ω, t) = f̂(ω) eiωct. Fourier inversion yields

u(x, t) =
1

2π

∫ ∞
−∞

eiω(x+ct) f̂(ω) dω = f(x+ ct) .

This reveals that the initial condition is a snapshot of a travelling wave with profile f propagating with velocity c (in negative x-direction if

c > 0, in positive x-direction if c < 0, and “frozen” if c = 0).

THE END


