EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Wednesday January 31, 2018. Time: 13:30–16:30. Place: PAV SH2 H.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is *not* allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

(30) 1. LINEAR SPACE (EXAM JULY 8, 2004, PROBLEM 2)

 $C_0^2([0,1])$ is the class of twofold continuously differentiable, real-valued functions of type $f:[0,1] \to \mathbb{R}$, for which f(0) = f(1) = f'(0) = f'(1) = 0. (By f'(0) en f'(1) we mean the right, resp. left derivative at the point of interest.) Without proof we state that $C^2([0,1])$, the class of real-valued functions on the closed interval [0,1] which are twofold continuously differentiable, constitutes a linear space.

(5) **a.** Prove that $C_0^2([0,1])$ is a linear space. (*Hint:* $C_0^2([0,1]) \subset C^2([0,1])$.)

We endow the linear space $C_0^2([0,1])$ with a real inner product according to one of the definitions below. The subscript refers to the applicable definition, so do not forget to indicate this in your notation throughout.

Definition 1: For $f, g \in C_0^2([0, 1])$,

$$\langle f|g\rangle_1 = \int_0^1 f(x) g(x) dx + \int_0^1 f'(x) g'(x) dx.$$

Definition 2: For $f, g \in C_0^2([0, 1])$,

$$\langle f|g\rangle_2 = \int_0^1 f(x) g(x) dx - \frac{1}{2} \int_0^1 f''(x) g(x) dx - \frac{1}{2} \int_0^1 f(x) g''(x) dx.$$

- (5) **b.** Show that Definition 1 is a good definition, in the sense that it indeed defines an inner product.
- (5) **c.** Prove that both definitions are equivalent. (*Hint:* Partial integration.)

Due to equivalence you may henceforth omit subscripts: $\langle f|g \rangle = \langle f|g \rangle_1 = \langle f|g \rangle_2$. With the help of this inner product we introduce, for arbitrarily fixed $h \in C_0^2([0,1])$, the following linear mapping $P_h: C_0^2([0,1]) \to C_0^2([0,1])$:

Definition:
$$P_h(f) = \frac{\langle h|f\rangle}{\langle h|h\rangle} h$$

(5) **d.** Show that $P_h \circ P_h = P_h$. The infix operator \circ denotes composition.

(5) **e.** Show that
$$P_h^{\dagger} = P_h$$
, i.e. $\langle g | P_h f \rangle = \langle P_h g | f \rangle$ for all $f, g \in C_0^2([0, 1])$.

Consider the following pair of functions (note that f(x) = f(1-x) and g(x) = g(1-x)):

$$f(x) = x^4 - 2x^3 + x^2 \quad (0 \le x \le 1) \quad \text{and} \quad g(x) = \begin{cases} -4x^3 + 3x^2 & (0 \le x \le \frac{1}{2}) \\ -4(1-x)^3 + 3(1-x)^2 & (\frac{1}{2} \le x \le 1) \end{cases}$$

(5) **f.** Show that $f, g \in C_0^2([0, 1])$.

÷

(25) 2. NORM

Consider the *p*-parametrized family of norms on the vector space \mathbb{R}^2 ,

$$\| \cdot \|_p : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto \| (x, y) \|_p \stackrel{\text{def}}{=} (|x|^p + |y|^p)^{1/p},$$

for $p \ge 1$, together with the formal limit

$$\| \cdot \|_{\infty} : \mathbb{R}^2 \to \mathbb{R} : (x, y) \mapsto \| (x, y) \|_{\infty} \stackrel{\text{def}}{=} \max(|x|, |y|) \,.$$

(5) **a.** Prove: $\lim_{p \to \infty} (|x|^p + |y|^p)^{1/p} = \max(|x|, |y|).$

For each $p \ge 1$, including the formal limit $p = \infty$, the *unit circle* C_p and the (open) *unit disk* D_p are defined as the sets $C_p : ||(x, y)||_p = 1$, respectively $D_p : ||(x, y)||_p < 1$, with $(x, y) \in \mathbb{R}^2$. The figure below illustrates the cases C_2 and D_2 .

Graph of $C_2: \sqrt{x^2 + y^2} = 1$ and its interior $D_2: \sqrt{x^2 + y^2} < 1$.

(10) **b.** Sketch in the same figure (cf. appendix) the graph of the unit circles $C_1 : ||(x,y)||_1 = 1$ and $C_{\infty} : ||(x,y)||_{\infty} = 1$, and clearly indicate which one is which.

The unit circle C_p is called *convex* if $(x, y), (u, v) \in C_p$ implies $\lambda(x, y) + (1 - \lambda)(u, v) \in \overline{D}_p = D_p \cup C_p$ for all $\lambda \in [0, 1]$.

- (5) **c.** What does convexity of C_p mean graphically? (*Hint:* Consider the line piece connecting two endpoints $(x, y), (u, v) \in C_p$.)
- (5) **d.** Show that C_p is convex for any $p \ge 1$ including $p = \infty$. (*Hint:* You may use the fact that $\| \cdot \|_p$ for $p \ge 1$ and $\| \cdot \|_\infty$ define norms without further proof.)

÷

(20) **3.** MAX-PLUS ALGEBRA

Consider the set $\mathbb{A} = \mathbb{R} \cup \{(-\infty)\}$ consisting of all real numbers and the formal element ' $(-\infty)$ '. Please adhere to the use of parentheses to avoid confusion.

Commutative addition $\oplus : \mathbb{A} \times \mathbb{A} \to \mathbb{A}$ is defined in terms of the maximum operator as follows:

 $a \oplus b = \max(a, b)$ for all $a, b \in \mathbb{A}$,

with the 'natural' definition $\max(a, (-\infty)) = \max((-\infty), a) = a$ for any $a \in \mathbb{A}$.

Commutative multiplication $\otimes : \mathbb{A} \times \mathbb{A} \to \mathbb{A}$ is defined as follows:

$$a \otimes b = a + b$$
 for all $a \in \mathbb{A}$,

with the 'natural' definition $(-\infty) + a = a + (-\infty) = (-\infty)$ for any $a \in \mathbb{A}$.

- (5) **a.** Show that \oplus is idempotent, i.e. show that $a \oplus a = a$ for all $a \in \mathbb{A}$.
- $(2\frac{1}{2})$ **b1.** Show that \oplus is associative on \mathbb{A} .
- $(2\frac{1}{2})$ **b2.** Show that \otimes is associative on A.
- (5) **c.** Prove the distributivity rule $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$ for all $a, b, c \in \mathbb{A}$.
- $(2\frac{1}{2})$ **d1.** What is the null element for \oplus ?
- $(2\frac{1}{2})$ **d2.** What is the unit element for \otimes ?

(25) 4. DISTRIBUTION THEORY AND FOURIER ANALYSIS

Consider the ordinary differential equation (ODE)

$$u'+u=\delta\,,$$

in which $u \in \mathscr{S}'(\mathbb{R})$ is assumed to be a tempered distribution. We denote the Fourier transform of u by $\hat{u} \in \mathscr{S}'(\mathbb{R})$. Corresponding 'functions under the integral' (including formal functions of Dirac type) are referred to by the same name, i.e. $u : \mathbb{R} \to \mathbb{C}$, respectively $\hat{u} : \mathbb{R} \to \mathbb{C}$.

- (5) **a1.** Use Fourier theory to reformulate the ODE for u into an algebraic equation for \hat{u} .
- (5) **a2.** Show that $\operatorname{Re} \hat{u}(\omega) = \frac{1}{1+\omega^2}$ and $\operatorname{Im} \hat{u}(\omega) = -\frac{\omega}{1+\omega^2}$ by solving this equation for $\hat{u} \in \mathscr{S}'(\mathbb{R})$ in Fourier space.

Suppose $u \in \mathscr{S}'(\mathbb{R})$ is a solution to the ODE corresponding to a regular tempered distribution.

b. Show that the corresponding 'function under the integral' $u: \mathbb{R} \to \mathbb{C}: x \mapsto u(x)$ must satisfy

(5) **b1.**
$$\int_{-\infty}^{\infty} u(x) \, dx = 1.$$

(5) **b2.** $u(0) = \frac{1}{2}$. (*Hint:* Use a2.)

The function $\theta : \mathbb{R} \to \mathbb{C} : x \mapsto \theta(x)$ is given by $\theta(x) = 0$ if x < 0, $\theta(0) = \frac{1}{2}$, $\theta(x) = 1$ if x > 0.

(5) **c.** Show that $u(x) = \theta(x) e^{-x}$ is a solution to the ODE.

÷

APPENDIX

Course code: 2DMM10. Date: Wednesday January 31, 2018. Time: 13:30–16:30. Place: PAV SH2 H.

Write your name and student ID on this appendix and hand it in together with the rest of your answers.

