EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 2DMM10. Date: Wednesday January 31, 2018. Time: 13:30-16:30. Place: PAV SH2 H.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- The use of course notes is allowed, provided it is in immaculate state. The use of other notes, calculator, laptop, smartphone, or any other equipment, is not allowed.
- Motivate your answers. You may provide your answers in Dutch or English.

GOOD LUCK!

1. Linear Space (Exam July 8, 2004, Problem 2)

$C_{0}^{2}([0,1])$ is the class of twofold continuously differentiable, real-valued functions of type $f:[0,1] \rightarrow \mathbb{R}$, for which $f(0)=f(1)=f^{\prime}(0)=f^{\prime}(1)=0$. (By $f^{\prime}(0)$ en $f^{\prime}(1)$ we mean the right, resp. left derivative at the point of interest.) Without proof we state that $C^{2}([0,1])$, the class of real-valued functions on the closed interval $[0,1]$ which are twofold continuously differentiable, constitutes a linear space.
(5) a. Prove that $C_{0}^{2}([0,1])$ is a linear space.
(Hint: $C_{0}^{2}([0,1]) \subset C^{2}([0,1])$.)
We endow the linear space $C_{0}^{2}([0,1])$ with a real inner product according to one of the definitions below. The subscript refers to the applicable definition, so do not forget to indicate this in your notation throughout.

Definition 1: For $f, g \in C_{0}^{2}([0,1])$,

$$
\langle f \mid g\rangle_{1}=\int_{0}^{1} f(x) g(x) d x+\int_{0}^{1} f^{\prime}(x) g^{\prime}(x) d x
$$

Definition 2: For $f, g \in C_{0}^{2}([0,1])$,

$$
\langle f \mid g\rangle_{2}=\int_{0}^{1} f(x) g(x) d x-\frac{1}{2} \int_{0}^{1} f^{\prime \prime}(x) g(x) d x-\frac{1}{2} \int_{0}^{1} f(x) g^{\prime \prime}(x) d x
$$

b. Show that Definition 1 is a good definition, in the sense that it indeed defines an inner product.
c. Prove that both definitions are equivalent.
(Hint: Partial integration.)

Due to equivalence you may henceforth omit subscripts: $\langle f \mid g\rangle=\langle f \mid g\rangle_{1}=\langle f \mid g\rangle_{2}$. With the help of this inner product we introduce, for arbitrarily fixed $h \in C_{0}^{2}([0,1])$, the following linear mapping $P_{h}: C_{0}^{2}([0,1]) \rightarrow C_{0}^{2}([0,1]):$

Definition: $P_{h}(f)=\frac{\langle h \mid f\rangle}{\langle h \mid h\rangle} h$.

2. NORM

Consider the p-parametrized family of norms on the vector space \mathbb{R}^{2},

$$
\|\cdot\|_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto\|(x, y)\|_{p} \stackrel{\text { def }}{=}\left(|x|^{p}+|y|^{p}\right)^{1 / p}
$$

for $p \geq 1$, together with the formal limit

$$
\begin{equation*}
\|\cdot\|_{\infty}: \mathbb{R}^{2} \rightarrow \mathbb{R}:(x, y) \mapsto\|(x, y)\|_{\infty} \stackrel{\text { def }}{=} \max (|x|,|y|) . \tag{5}
\end{equation*}
$$

a. Prove: $\lim _{p \rightarrow \infty}\left(|x|^{p}+|y|^{p}\right)^{1 / p}=\max (|x|,|y|)$.

For each $p \geq 1$, including the formal limit $p=\infty$, the unit circle C_{p} and the (open) unit disk D_{p} are defined as the sets $C_{p}:\|(x, y)\|_{p}=1$, respectively $D_{p}:\|(x, y)\|_{p}<1$, with $(x, y) \in \mathbb{R}^{2}$. The figure below illustrates the cases C_{2} and D_{2}.

$$
\text { GRAPH OF } C_{2}: \sqrt{x^{2}+y^{2}}=1 \text { AND ITS INTERIOR } D_{2}: \sqrt{x^{2}+y^{2}}<1
$$

(10) b. Sketch in the same figure (cf. appendix) the graph of the unit circles $C_{1}:\|(x, y)\|_{1}=1$ and $C_{\infty}:\|(x, y)\|_{\infty}=1$, and clearly indicate which one is which.

The unit circle C_{p} is called convex if $(x, y),(u, v) \in C_{p}$ implies $\lambda(x, y)+(1-\lambda)(u, v) \in \bar{D}_{p}=D_{p} \cup C_{p}$ for all $\lambda \in[0,1]$.
(5) c. What does convexity of C_{p} mean graphically?
(Hint: Consider the line piece connecting two endpoints $(x, y),(u, v) \in C_{p}$.)
(5) d. Show that C_{p} is convex for any $p \geq 1$ including $p=\infty$.
(Hint: You may use the fact that $\|\cdot\|_{p}$ for $p \geq 1$ and $\|\cdot\|_{\infty}$ define norms without further proof.)
(20) 3. Max-Plus Algebra

Consider the set $\mathbb{A}=\mathbb{R} \cup\{(-\infty)\}$ consisting of all real numbers and the formal element ' $(-\infty)$ '. Please adhere to the use of parentheses to avoid confusion.

Commutative addition $\oplus: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}$ is defined in terms of the maximum operator as follows:

$$
a \oplus b=\max (a, b) \quad \text { for all } a, b \in \mathbb{A},
$$

with the 'natural' definition $\max (a,(-\infty))=\max ((-\infty), a)=a$ for any $a \in \mathbb{A}$.
Commutative multiplication $\otimes: \mathbb{A} \times \mathbb{A} \rightarrow \mathbb{A}$ is defined as follows:

$$
a \otimes b=a+b \quad \text { for all } a \in \mathbb{A},
$$

with the 'natural' definition $(-\infty)+a=a+(-\infty)=(-\infty)$ for any $a \in \mathbb{A}$.
(5) a. Show that \oplus is idempotent, i.e. show that $a \oplus a=a$ for all $a \in \mathbb{A}$.
b1. Show that \oplus is associative on \mathbb{A}.
b2. Show that \otimes is associative on \mathbb{A}.
c. Prove the distributivity rule $(a \oplus b) \otimes c=(a \otimes c) \oplus(b \otimes c)$ for all $a, b, c \in \mathbb{A}$.
d1. What is the null element for \oplus ?
d2. What is the unit element for \otimes ?

Consider the ordinary differential equation (ODE)

$$
u^{\prime}+u=\delta,
$$

in which $u \in \mathscr{S}^{\prime}(\mathbb{R})$ is assumed to be a tempered distribution. We denote the Fourier transform of u by $\hat{u} \in \mathscr{S}^{\prime}(\mathbb{R})$. Corresponding 'functions under the integral' (including formal functions of Dirac type) are referred to by the same name, i.e. $u: \mathbb{R} \rightarrow \mathbb{C}$, respectively $\hat{u}: \mathbb{R} \rightarrow \mathbb{C}$.
a1. Use Fourier theory to reformulate the ODE for u into an algebraic equation for \hat{u}.
a2. Show that $\operatorname{Re} \hat{u}(\omega)=\frac{1}{1+\omega^{2}}$ and $\operatorname{Im} \hat{u}(\omega)=-\frac{\omega}{1+\omega^{2}}$ by solving this equation for $\hat{u} \in \mathscr{S}^{\prime}(\mathbb{R})$ in Fourier space.

Suppose $u \in \mathscr{S}^{\prime}(\mathbb{R})$ is a solution to the ODE corresponding to a regular tempered distribution.
b. Show that the corresponding 'function under the integral' $u: \mathbb{R} \rightarrow \mathbb{C}: x \mapsto u(x)$ must satisfy
b1. $\int_{-\infty}^{\infty} u(x) d x=1$.
(5) b2. $u(0)=\frac{1}{2}$.
(Hint: Use a2.)
The function $\theta: \mathbb{R} \rightarrow \mathbb{C}: x \mapsto \theta(x)$ is given by $\theta(x)=0$ if $x<0, \theta(0)=\frac{1}{2}, \theta(x)=1$ if $x>0$.
(5) c. Show that $u(x)=\theta(x) e^{-x}$ is a solution to the ODE.

APPENDIX

Course code: 2DMM10. Date: Wednesday January 31, 2018. Time: 13:30-16:30. Place: PAV SH2 H.

- Name: \qquad
- Student ID: \qquad

Write your name and student ID on this appendix and hand it in together with the rest of your answers.

