EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday April 11, 2014. Time: 09h00-12h00. Place: AUD 15.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or other equipment, is not allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Spaces

We consider the linear space V over \mathbb{R} consisting of all infinite sequences $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in \mathbb{R}^{\infty}$, furnished with the usual definitions of vector addition and scalar multiplication. You may take it for granted that V is indeed a linear space.
a. Explain what is meant by "the usual definitions of vector addition and scalar multiplication".

If $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right), t=\left(t_{1}, t_{2}, t_{3}, \ldots\right) \in \mathbb{R}^{\infty}$ and $\lambda, \mu \in \mathbb{R}$, then $\lambda s+\mu t=\left(\lambda s_{1}+\mu t_{1}, \lambda s_{2}+\mu t_{2}, \lambda s_{3}+\mu t_{3}, \ldots\right)$.
The subset $W \subset V$ is defined as the set of converging sequences:

$$
W=\left\{s \in V \mid-\infty<\lim _{n \rightarrow \infty} s_{n}<\infty\right\}
$$

b. Show that W is itself a linear space over \mathbb{R}.

Since $W \subset V$, with V a linear space, it suffices to prove closure of W by the subspace theorem. Let $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in W$ and $t=\left(t_{1}, t_{2}, t_{3}, \ldots\right) \in W$, with limts $\lim _{n \rightarrow \infty} s_{n}=\sigma$ and $\lim _{n \rightarrow \infty} t_{n}=\tau$ for some $\sigma, \tau \in \mathbb{R}$, say. Then the sequence $\ell=\lambda s+\mu t$, given by $\left(\ell_{1}, \ell_{2}, \ell_{3}, \ldots\right)=\left(\lambda s_{1}+\mu t_{1}, \lambda s_{2}+\mu t_{2}, \lambda s_{3}+\mu t_{3}, \ldots\right)$, converges, viz. $\lim _{n \rightarrow \infty} \ell_{n}=\lambda \sigma+\mu \tau \in \mathbb{R}$.

We subsequently consider the subsets $W_{a} \subset W$ for each fixed $a \in \mathbb{R}$, defined as follows:

$$
W_{a}=\left\{s \in W \mid \lim _{n \rightarrow \infty} s_{n}=a\right\}
$$

(10) c. Does W_{a} define a linear space? Prove your statement.

For nonzero $a \in \mathbb{R}, W_{a} \subset W$ is not closed and therefore not a linear space, since if $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in W_{a}$ and $t=$ $\left(t_{1}, t_{2}, t_{3}, \ldots\right) \in W_{a}$, then $\lim _{n \rightarrow \infty}(\lambda s+\mu t)_{n}=\lambda \lim _{n \rightarrow \infty} s_{n}+\mu \lim _{n \rightarrow \infty} t_{n}=(\lambda+\mu) a$, so $\lambda s+\mu t \in W_{(\lambda+\mu) a}$ for all $\lambda, \mu \in \mathbb{R}$. For closure we must require that $(\lambda+\mu) a=a$ for all $\lambda, \mu \in \mathbb{R}$, which holds if and only if $a=0$. By the subspace theorem $W_{0} \subset W$ does indeed define a linear space.

Let $C \subset V$ be the set of infinite sequences with converging partial sums, i.e.

$$
C=\left\{s \in V \mid-\infty<\sum_{n=1}^{\infty} s_{n} \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} s_{n}<\infty\right\}
$$

d. Show that C is a linear space over \mathbb{R}.
(Hint: Recall c and argue why the subspace theorem applies.)

Terms in a converging series constitute a sequence that converges to zero, i.e. $C \subset W_{0}$. Consequently, since W_{0} is a linear space, we may use the subspace theorem. If $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in C$ and $t=\left(t_{1}, t_{2}, t_{3}, \ldots\right) \in C$, then we have $\lambda s+\mu t=\left(\lambda s_{1}+\mu t_{1}, \lambda s_{2}+\mu t_{2}, \lambda s_{3}+\mu t_{3}, \ldots\right)$ for all $\lambda, \mu \in \mathbb{R}$. That this is an element of C follows from the fact that $\lim _{N \rightarrow \infty} \sum_{n=1}^{N}(\lambda s+\mu t)_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N}\left(\lambda s_{n}+\mu t_{n}\right)=\lambda \lim _{N \rightarrow \infty} \sum_{n=1}^{N} s_{n}+\mu \lim _{N \rightarrow \infty} \sum_{n=1}^{N} t_{n}$ is finite for all $\lambda, \mu \in \mathbb{R}$.
(20) 2. Inner Product (Exam June 28, 2006, Problem 1)

In this problem we consider a vector space V over the scalar field \mathbb{R}, equipped with a real-valued inner product, $\langle\mid\rangle: V \times V \rightarrow \mathbb{R}:(v, w) \mapsto\langle v \mid w\rangle$. We henceforth refer to a real-valued inner product simply as "inner product".

Lemma. For each pair of vectors $v, w \in V$ the following Schwartz inequality holds:

$$
|\langle v \mid w\rangle| \leq \sqrt{\langle v \mid v\rangle\langle w \mid w\rangle}
$$

(5) a. Prove this lemma, exploiting the defining properties of the inner product.
(Hint: Consider the trivial inequality $\langle\lambda v+w \mid \lambda v+w\rangle \geq 0$ for given $v, w \in V$ and arbitrary $\lambda \in \mathbb{R}$. Why, by the way, is this inequality "trivial"?)

The inequality $\langle\lambda v+w \mid \lambda v+w\rangle \geq 0$ holds trivially, because by definition an inner product is non-negative definite on V. Using bilinearity and symmetry we may rewrite the inequality as

$$
\langle v \mid v\rangle \lambda^{2}+2\langle v \mid w\rangle \lambda+\langle w \mid w\rangle \geq 0
$$

The left hand side is apparently a non-negative quadratic function in $\lambda \in \mathbb{R}$ (the corresponding graph is a parabola pointing downward and touching the λ-axis in at most one point). The discriminant thus has to be non-positive:

$$
4\langle v \mid w\rangle^{2}-4\langle v \mid v\rangle\langle w \mid w\rangle \leq 0
$$

This immediately yields the Schwartz inequality.
Theorem. Every inner product $\langle\mid\rangle: V \times V \rightarrow \mathbb{R}$ induces a norm, $\|\|: V \rightarrow \mathbb{R}$, as follows:

$$
\|v\| \stackrel{\text { def }}{=} \sqrt{\langle v \mid v\rangle} .
$$

This norm is referrred to as the norm induced by the inner product.
(5) b. Prove this theorem, using the defining properties of the inner product.

1. For arbitrary $v \in V$ we have $\|v\| \stackrel{\text { def }}{=} \sqrt{\langle v \mid v\rangle} \geq 0$, in which the inequality follows from the fact that any inner product satisfies $\langle v \mid v\rangle \geq 0$. Moreover, equality holds if and only if $v=0 \in V$ as a consequence of non-degeneracy of the inner product.
2. For arbitrary $v \in V$ en $\lambda \in \mathbb{R}$ we have $\|\lambda v\| \stackrel{\text { def }}{=} \sqrt{\langle\lambda v \mid \lambda v\rangle} \stackrel{*}{=} \sqrt{\lambda^{2}\langle v \mid v\rangle}=|\lambda| \sqrt{\langle v \mid v\rangle} \stackrel{\text { def }}{=}|\lambda|\|v\|$. The identity * follows from bilinearity of the inner product.
3. For all $v, w \in V$ we have $\|v+w\|^{2} \stackrel{\text { def }}{=}\langle v+w \mid v+w\rangle \stackrel{*}{=}\langle v \mid v\rangle+2\langle v \mid w\rangle+\langle w \mid w\rangle \stackrel{\star}{\leq}\langle v \mid v\rangle+2 \sqrt{\langle v \mid v\rangle\langle w \mid w\rangle}+\langle w \mid w\rangle \stackrel{\text { def }}{=}$ $\|v\|^{2}+2\|v\|\|w\|+\|w\|^{2}=(\|v\|+\|w\|)^{2}$. Therefore it follows that $\|v+w\| \leq\|v\|+\|w\|$. In $*$ we have made use of bilinearity and symmetry of the inner product, and in \star of the Schwartz inequality.
c. Prove that for all $v, w \in V$ we have

$$
\begin{equation*}
\frac{1}{4}\|v+w\|^{2}-\frac{1}{4}\|v-w\|^{2}=\langle v \mid w\rangle . \tag{5}
\end{equation*}
$$

Using the definition of the norm induced by the inner product and of bilinearity and symmetry of the inner product, we may rewrite the left hand side as follows:
$\frac{1}{4}\|v+w\|^{2}-\frac{1}{4}\|v-w\|^{2} \stackrel{\text { def }}{=} \frac{1}{4}\langle v+w \mid v+w\rangle-\frac{1}{4}\langle v-w \mid v-w\rangle=\frac{1}{4}(\langle v \mid v\rangle+2\langle v \mid w\rangle+\langle w \mid w\rangle)-\frac{1}{4}(\langle v \mid v\rangle-2\langle v \mid w\rangle+\langle w \mid w\rangle)=\langle v \mid w\rangle$.
d. Prove that for all $v, w \in V$ we have

$$
\begin{equation*}
\frac{1}{2}\|v+w\|^{2}+\frac{1}{2}\|v-w\|^{2}=\|v\|^{2}+\|w\|^{2} . \tag{5}
\end{equation*}
$$

In analogy with the previous problem we rewrite terms on the left hand side as follows:

$$
\|v \pm w\|^{2} \stackrel{\text { def }}{=}\langle v \pm w \mid v \pm w\rangle=\langle v \mid v\rangle \pm 2\langle v \mid w\rangle+\langle w \mid w\rangle
$$

Taking the average of the " + " and "-" terms, the mixed terms cancel:

$$
\frac{1}{2}\|v+w\|^{2}+\frac{1}{2}\|v-w\|^{2}=\langle v \mid v\rangle+\langle w \mid w\rangle \stackrel{\text { def }}{=}\|v\|^{2}+\|w\|^{2} .
$$

3. Algebras

A so-called octonion, or Cayley's number, can be written as a real linear combination of eight "unit octonions", $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ and e_{7}, say. Together, these linear combinations constitute the set

$$
\mathbb{O}=\left\{x=\sum_{i=0}^{7} x_{i} e_{i} \mid x_{i} \in \mathbb{R}\right\}
$$

We conjecture that \mathbb{O} forms an 8 -dimensional real vector space.
(10) a. Show that if $x=\sum_{i=0}^{7} x_{i} e_{i} \in \mathbb{O}, y=\sum_{i=0}^{7} y_{i} e_{i} \in \mathbb{O}$ for $x_{i}, y_{i} \in \mathbb{R}$, and $\lambda \in \mathbb{R}$, then $z=x+\lambda y \in \mathbb{O}$.

We have $z=x+\lambda y=\sum_{i=0}^{7} x_{i} e_{i}+\lambda \sum_{i=0}^{7} y_{i} e_{i}=\sum_{i=0}^{7}\left(x_{i}+\lambda y_{i}\right) e_{i} \in \mathbb{O}$.

In an attempt to turn the vector space \mathbb{O} into an algebra we introduce multiplication. Its defining rules can be deduced from Fanos' plane (see Fig. 1). The following rules apply:

Figure 1: Fano's plane.

- each of the seven nodes in the diagram represents a unit octonion as indicated (e_{0} is not depicted in the diagram);
- if (a, b, c) is an ordered triple of unit octonions lying on a given line with the order specified by the direction of the arrow, then $a b=c$ and $b a=-c$, together with cyclic permutations (thus e.g. $e_{1} e_{2}=e_{3}, e_{1} e_{6}=-e_{7}$, et cetera);
- e_{0} is the multiplicative identity element (often written as " 1 ");
- $e_{i} e_{i}=-e_{0}$ for each $i=1, \ldots, 7$.

With the usual distributive laws for products of linear combinations this completely defines the multiplicative structure of \mathbb{O}. Example:

$$
\left(3 e_{0}+e_{1}\right)\left(2 e_{2}-e_{6}\right)=6 e_{0} e_{2}-3 e_{0} e_{6}+2 e_{1} e_{2}-e_{1} e_{6}=6 e_{2}+2 e_{3}-3 e_{6}+e_{7} .
$$

(10) b. Complete the multiplication table in Fig. 2 (see appendix) with the help of Fano's plane and the stated rules.
(Attention: Do not forget to hand this in with your name and student ID on it.)

See Fig. 3 in the appendix.
The associator $[a, b, c]$ of three octonions $a, b, c \in \mathbb{O}$ is given by

$$
[a, b, c]=(a b) c-a(b c) .
$$

Recall that, according to our definition, associativity is one of the basic axioms of an algebra. A linear space endowed with a multiplicative structure that fulfills this axiom is also referred to as an associative algebra.
c. Show that \mathbb{O} is not an associative algebra.

We need to find an example of a nonvanishing associator. There are multiple options. One example is $\left[e_{1}, e_{2}, e_{4}\right]=$ $\left(e_{1} e_{2}\right) e_{4}-e_{1}\left(e_{2} e_{4}\right)=e_{3} e_{4}-e_{1} e_{6}=e_{7}+e_{7}=2 e_{7} \neq 0 \in \mathbb{O}$, in which we have used Fig. 3.

4. Distribution Theory \& Fourier Analysis

The Fourier transform $\widehat{T} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of a distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined as follows:

$$
\widehat{T}(\phi)=T(\widehat{\phi}) \quad \text { for all test functions } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

in which

$$
\widehat{\phi}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} \phi(x) d x
$$

The purpose of this problem is to motivate this definition.
To this end, consider any function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth for which the Fourier integral

$$
\widehat{f}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} f(x) d x
$$

is well-defined and yields a function $\widehat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth. Denote by $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ the corresponding regular tempered distribution, i.e.

$$
T_{f}(\phi)=\int_{\mathbb{R}^{n}} f(x) \phi(x) d x
$$

for all test functions $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. It is then natural to define $\widehat{T}_{f} \stackrel{\text { def }}{=} T_{\widehat{f}}$, i.e.

$$
\begin{equation*}
\widehat{T}_{f}(\phi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \phi(\xi) d \xi \tag{*}
\end{equation*}
$$

a. Show that this definition implies $\widehat{T}_{f}(\phi)=T_{f}(\widehat{\phi})$ for any $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. (Hint: $\operatorname{In}(*)$ apply the Fourier reconstruction formula in the following form: $\phi(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i \xi \cdot x} \widehat{\phi}(x) d x$.)

Following the hint (in *) we write

$$
\widehat{T}_{f}(\phi) \stackrel{\text { def }}{=} T_{\widehat{f}}(\phi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \phi(\xi) d \xi \stackrel{*}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi)\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i \xi \cdot x} \widehat{\phi}(x) d x\right) d \xi .
$$

Interchanging the order of integration this is seen to be equivalent to

$$
\int_{\mathbb{R}^{n}}\left(\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{i \xi \cdot x} d \xi\right) \widehat{\phi}(x) d x \stackrel{\circ}{=\int_{\mathbb{R}^{n}} f(x) \widehat{\phi}(x) d x=T_{f}(\widehat{\phi})}
$$

In o the Fourier reconstruction formula has been used once more, this time for the function f.
This result justifies the general definition (\star), even if $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is not regular.
As an example, consider the (non-regular) Dirac point distribution $\delta \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$, defined by $\delta(\phi)=\phi(0)$ for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.
(10) b. Use the general definition (\star) to prove that $\hat{\delta}=T_{1}$. Here $T_{1} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is the regular tempered distribution corresponding to the constant function $1: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto 1(x)=1$.

Using the distributional definition of the Fourier transform (in \star) we find that

$$
\widehat{\delta}(\phi) \stackrel{\star}{=} \delta(\widehat{\phi}) \stackrel{\text { def }}{=} \widehat{\phi}(0) \stackrel{\dagger}{=} \int_{\mathbb{R}^{n}} \phi(x) d x \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} 1(x) \phi(x) d x \stackrel{\text { def }}{=} T_{1}(\phi)
$$

Note that \dagger uses a special case of the definition of the Fourier transform, viz.

$$
\widehat{\phi}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} \phi(x) d x,
$$

for $\omega=0 \in \mathbb{R}^{n}$.

THE END

Figure 2: Multiplication table.

x	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{0}	e_{0}	e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}
e_{1}	e_{1}	$-e_{0}$	e_{3}	$-e_{2}$	e_{5}	$-e_{4}$	$-e_{7}$	e_{6}
e_{2}	e_{2}	$-e_{3}$	$-e_{0}$	e_{1}	e_{6}	e_{7}	$-e_{4}$	$-e_{5}$
e_{3}	e_{3}	e_{2}	$-e_{1}$	$-e_{0}$	e_{7}	$-e_{6}$	e_{5}	$-e_{4}$
e_{4}	e_{4}	$-e_{5}$	$-e_{6}$	$-e_{7}$	$-e_{0}$	e_{1}	e_{2}	e_{3}
e_{5}	e_{5}	e_{4}	$-e_{7}$	e_{6}	$-e_{1}$	$-e_{0}$	$-e_{3}$	e_{2}
e_{6}	e_{6}	e_{7}	e_{4}	$-e_{5}$	$-e_{2}$	e_{3}	$-e_{0}$	$-e_{1}$
e_{7}	e_{7}	$-e_{6}$	e_{5}	e_{4}	$-e_{3}$	$-e_{2}$	e_{1}	$-e_{0}$

Figure 3: Multiplication table completed.

