
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday April 11, 2014. Time: 09h00–12h00. Place: AUD 15.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Spaces(35)

We consider the linear space V over R consisting of all infinite sequences s=(s1, s2, s3, . . .)∈R∞,
furnished with the usual definitions of vector addition and scalar multiplication. You may take
it for granted that V is indeed a linear space.

a. Explain what is meant by “the usual definitions of vector addition and scalar multiplication”.(5)

If s=(s1, s2, s3, . . .), t=(t1, t2, t3, . . .)∈R∞ and λ, µ ∈ R, then λs+ µt=(λs1 + µt1, λs2 + µt2, λs3 + µt3, . . .).

The subset W ⊂ V is defined as the set of converging sequences:

W = {s ∈ V | −∞ < lim
n→∞

sn <∞}

b. Show that W is itself a linear space over R.(10)

Since W ⊂ V , with V a linear space, it suffices to prove closure of W by the subspace theorem. Let s=(s1, s2, s3, . . .)∈W
and t = (t1, t2, t3, . . .) ∈W , with limts limn→∞ sn = σ and limn→∞ tn = τ for some σ, τ ∈ R, say. Then the sequence

`=λs+ µt, given by (`1, `2, `3, . . .)=(λs1 + µt1, λs2 + µt2, λs3 + µt3, . . .), converges, viz. limn→∞ `n=λσ + µτ ∈ R.

We subsequently consider the subsets Wa ⊂W for each fixed a ∈ R, defined as follows:

Wa = {s ∈W | lim
n→∞

sn = a}

c. Does Wa define a linear space? Prove your statement.(10)

For nonzero a ∈ R, Wa ⊂ W is not closed and therefore not a linear space, since if s = (s1, s2, s3, . . .) ∈ Wa and t =

(t1, t2, t3, . . .) ∈Wa, then limn→∞(λs + µt)n = λ limn→∞ sn + µ limn→∞ tn = (λ + µ)a, so λs + µt ∈ W(λ+µ)a for all

λ, µ ∈ R. For closure we must require that (λ+ µ)a = a for all λ, µ ∈ R, which holds if and only if a=0. By the subspace

theorem W0 ⊂W does indeed define a linear space.
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Let C ⊂ V be the set of infinite sequences with converging partial sums, i.e.

C = {s ∈ V | −∞ <
∞∑
n=1

sn
def
= lim

N→∞

N∑
n=1

sn <∞}

d. Show that C is a linear space over R.(10)
(Hint: Recall c and argue why the subspace theorem applies.)

Terms in a converging series constitute a sequence that converges to zero, i.e. C ⊂ W0. Consequently, since W0 is a

linear space, we may use the subspace theorem. If s = (s1, s2, s3, . . .) ∈ C and t = (t1, t2, t3, . . .) ∈ C, then we have

λs+µt = (λs1 +µt1, λs2 +µt2, λs3 +µt3, . . .) for all λ, µ ∈ R. That this is an element of C follows from the fact that

limN→∞
∑N
n=1(λs+µt)n = limN→∞

∑N
n=1(λsn+µtn)=λ limN→∞

∑N
n=1 sn+µ limN→∞

∑N
n=1 tn is finite for all λ, µ ∈ R.

♣

2. Inner Product (Exam June 28, 2006, Problem 1)(20)

In this problem we consider a vector space V over the scalar field R, equipped with a real-valued
inner product, 〈 | 〉 : V × V → R : (v, w) 7→ 〈v|w〉. We henceforth refer to a real-valued inner
product simply as “inner product”.

Lemma. For each pair of vectors v, w ∈ V the following Schwartz inequality holds:

|〈v|w〉| ≤
√
〈v|v〉 〈w|w〉 .

a. Prove this lemma, exploiting the defining properties of the inner product.(5)
(Hint: Consider the trivial inequality 〈λv + w|λv + w〉 ≥ 0 for given v, w ∈ V and arbitrary λ ∈ R.

Why, by the way, is this inequality “trivial”?)

The inequality 〈λv + w|λv + w〉 ≥ 0 holds trivially, because by definition an inner product is non-negative definite on V .
Using bilinearity and symmetry we may rewrite the inequality as

〈v|v〉λ2 + 2〈v|w〉λ+ 〈w|w〉 ≥ 0 .

The left hand side is apparently a non-negative quadratic function in λ ∈ R (the corresponding graph is a parabola pointing
downward and touching the λ-axis in at most one point). The discriminant thus has to be non-positive:

4〈v|w〉2 − 4〈v|v〉〈w|w〉 ≤ 0 .

This immediately yields the Schwartz inequality.

Theorem. Every inner product 〈 | 〉 : V × V → R induces a norm, ‖ ‖ : V → R, as follows:

‖v‖ def
=

√
〈v|v〉 .

This norm is referrred to as the norm induced by the inner product.

b. Prove this theorem, using the defining properties of the inner product.(5)

1. For arbitrary v ∈ V we have ‖v‖ def
=
√
〈v|v〉 ≥ 0, in which the inequality follows from the fact that any inner

product satisfies 〈v|v〉 ≥ 0. Moreover, equality holds if and only if v = 0 ∈ V as a consequence of non-degeneracy
of the inner product.
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2. For arbitrary v ∈ V en λ ∈ R we have ‖λv‖ def
=
√
〈λv|λv〉 ∗=

√
λ2〈v|v〉 = |λ|

√
〈v|v〉 def

= |λ|‖v‖. The identity ∗
follows from bilinearity of the inner product.

3. For all v, w ∈ V we have ‖v+w‖2 def
= 〈v + w|v + w〉 ∗= 〈v|v〉+ 2〈v|w〉+ 〈w|w〉

?
≤ 〈v|v〉+ 2

√
〈v|v〉〈w|w〉+ 〈w|w〉 def=

‖v‖2 + 2‖v‖‖w‖ + ‖w‖2 = (‖v‖ + ‖w‖)2. Therefore it follows that ‖v + w‖ ≤ ‖v‖ + ‖w‖. In ∗ we have made use
of bilinearity and symmetry of the inner product, and in ? of the Schwartz inequality.

c. Prove that for all v, w ∈ V we have(5)

1

4
‖v + w‖2 − 1

4
‖v − w‖2 = 〈v|w〉 .

Using the definition of the norm induced by the inner product and of bilinearity and symmetry of the inner product, we
may rewrite the left hand side as follows:

1

4
‖v+w‖2−

1

4
‖v−w‖2 def

=
1

4
〈v + w|v + w〉−

1

4
〈v − w|v − w〉 =

1

4
(〈v|v〉+ 2〈v|w〉+ 〈w|w〉)−

1

4
(〈v|v〉 − 2〈v|w〉+ 〈w|w〉) = 〈v|w〉 .

d. Prove that for all v, w ∈ V we have(5)

1

2
‖v + w‖2 +

1

2
‖v − w‖2 = ‖v‖2 + ‖w‖2 .

In analogy with the previous problem we rewrite terms on the left hand side as follows:

‖v ± w‖2 def
= 〈v ± w|v ± w〉 = 〈v|v〉 ± 2〈v|w〉+ 〈w|w〉 .

Taking the average of the “+” and “−” terms, the mixed terms cancel:

1

2
‖v + w‖2 +

1

2
‖v − w‖2 = 〈v|v〉+ 〈w|w〉 def= ‖v‖2 + ‖w‖2 .

♣

3. Algebras(25)

A so-called octonion, or Cayley’s number, can be written as a real linear combination of eight
“unit octonions”, e0, e1, e2, e3, e4, e5, e6 and e7, say. Together, these linear combinations
constitute the set

O =

{
x =

7∑
i=0

xiei | xi ∈ R

}
We conjecture that O forms an 8-dimensional real vector space.

a. Show that if x=
7∑
i=0

xiei ∈ O, y=
7∑
i=0

yiei ∈ O for xi, yi ∈ R, and λ ∈ R, then z=x+λy ∈ O.(10)

We have z = x+ λy =
∑7
i=0 xiei + λ

∑7
i=0 yiei =

∑7
i=0 (xi + λyi) ei ∈ O.
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In an attempt to turn the vector space O into an algebra we introduce multiplication. Its
defining rules can be deduced from Fanos’ plane (see Fig. 1). The following rules apply:

Figure 1: Fano’s plane.

• each of the seven nodes in the diagram represents a unit octonion as indicated (e0 is not
depicted in the diagram);

• if (a, b, c) is an ordered triple of unit octonions lying on a given line with the order specified
by the direction of the arrow, then ab = c and ba = −c, together with cyclic permutations
(thus e.g. e1e2 = e3, e1e6 = −e7, et cetera);

• e0 is the multiplicative identity element (often written as “1”);

• eiei = −e0 for each i = 1, . . . , 7.

With the usual distributive laws for products of linear combinations this completely defines the
multiplicative structure of O. Example:

(3e0 + e1)(2e2 − e6) = 6e0e2 − 3e0e6 + 2e1e2 − e1e6 = 6e2 + 2e3 − 3e6 + e7 .

b. Complete the multiplication table in Fig. 2 (see appendix) with the help of Fano’s plane(10)
and the stated rules.
(Attention: Do not forget to hand this in with your name and student ID on it.)

See Fig. 3 in the appendix.

The associator [a, b, c] of three octonions a, b, c ∈ O is given by

[a, b, c] = (ab)c− a(bc) .
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Recall that, according to our definition, associativity is one of the basic axioms of an algebra.
A linear space endowed with a multiplicative structure that fulfills this axiom is also referred
to as an associative algebra.

c. Show that O is not an associative algebra.(5)

We need to find an example of a nonvanishing associator. There are multiple options. One example is [e1, e2, e4] =

(e1e2)e4 − e1(e2e4) = e3e4 − e1e6 = e7 + e7 = 2e7 6= 0 ∈ O, in which we have used Fig. 3.

♣

4. Distribution Theory & Fourier Analysis(20)

The Fourier transform T̂ ∈ S ′(Rn) of a distribution T ∈ S ′(Rn) is defined as follows:

T̂ (φ) = T (φ̂) for all test functions φ ∈ S (Rn), (?)

in which

φ̂(ω) =

∫
Rn
e−iω·x φ(x) dx .

The purpose of this problem is to motivate this definition.

To this end, consider any function f : Rn → C of polynomial growth for which the Fourier
integral

f̂(ω) =

∫
Rn
e−iω·x f(x) dx

is well-defined and yields a function f̂ : Rn → C of polynomial growth. Denote by Tf ∈S ′(Rn)
the corresponding regular tempered distribution, i.e.

Tf (φ) =

∫
Rn
f(x)φ(x) dx

for all test functions φ ∈ S (Rn). It is then natural to define T̂f
def
= T

f̂
, i.e.

T̂f (φ)
def
=

∫
Rn
f̂(ξ)φ(ξ) dξ . (∗)

a. Show that this definition implies T̂f (φ) = Tf (φ̂) for any φ ∈ S (Rn).(10)

(Hint: In (∗) apply the Fourier reconstruction formula in the following form: φ(ξ) =
1

(2π)n

∫
Rn

eiξ·x φ̂(x) dx.)

Following the hint (in ∗) we write

T̂f (φ)
def
= T

f̂
(φ)

def
=

∫
Rn

f̂(ξ)φ(ξ) dξ
∗
=

∫
Rn

f̂(ξ)

(
1

(2π)n

∫
Rn

eiξ·x φ̂(x) dx

)
dξ .

Interchanging the order of integration this is seen to be equivalent to∫
Rn

(
1

(2π)n

∫
Rn

f̂(ξ)eiξ·x dξ

)
φ̂(x) dx

◦
=

∫
Rn

f(x) φ̂(x) dx = Tf (φ̂) .
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In ◦ the Fourier reconstruction formula has been used once more, this time for the function f .

This result justifies the general definition (?), even if T ∈ S ′(Rn) is not regular.

As an example, consider the (non-regular) Dirac point distribution δ ∈ S ′(Rn), defined by
δ(φ) = φ(0) for all φ ∈ S (Rn).

b. Use the general definition (?) to prove that δ̂ = T1 . Here T1 ∈ S ′(Rn) is the regular(10)
tempered distribution corresponding to the constant function 1 : Rn → C : x 7→ 1 (x) = 1.

Using the distributional definition of the Fourier transform (in ?) we find that

δ̂(φ)
?
= δ(φ̂)

def
= φ̂(0)

†
=

∫
Rn

φ(x) dx
def
=

∫
Rn

1 (x)φ(x) dx
def
= T1 (φ) .

Note that † uses a special case of the definition of the Fourier transform, viz.

φ̂(ω) =

∫
Rn

e−iω·xφ(x) dx ,

for ω = 0 ∈ Rn.

THE END

6



Name: Student ID:

Figure 2: Multiplication table.
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Figure 3: Multiplication table completed.
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