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EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday April 11, 2014. Time: 09h00-12h00. Place: AUD 15.

Read this first!

e Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

e You may provide your answers in Dutch or English.

GOOD LUCK!

1. VECTOR SPACES

We consider the linear space V over R consisting of all infinite sequences s =(s1, s2, $3,...) ER™,
furnished with the usual definitions of vector addition and scalar multiplication. You may take
it for granted that V is indeed a linear space.

a. Explain what is meant by “the usual definitions of vector addition and scalar multiplication”.

If s=(s1,82,83,...),t=(t1,t2,t3,...) ER>® and A\, p € R, then As + ut=(As1 + pt1, As2 + pta, Ass + uts, .. .).

The subset W C V is defined as the set of converging sequences:

W={seV| -oco< le Sp < 00}

b. Show that W is itself a linear space over R.

Since W C V, with V a linear space, it suffices to prove closure of W by the subspace theorem. Let s=(s1, s2,53,...)EW
and t = (t1,t2,t3,...) € W, with limts limy, oo sn = 0 and limn—soo tn = 7 for some 0,7 € R, say. Then the sequence

L=MXs + ut, given by (£1,402,€3,...)=(As1 + pt1, As2 + pte, As3 + pts, . ..), converges, viz. limy 00 bn =Ao + pu7 € R.

We subsequently consider the subsets W, C W for each fixed a € R, defined as follows:

Wa:{3€W|1}Lngosn:a}

c. Does W, define a linear space? Prove your statement.

For nonzero a € R, W, C W is not closed and therefore not a linear space, since if s = (s1,s2,83,...) € W, and t =
(t1,%2,t3,...) € Wy, then limp—soo(As + pt)n = Alimp—oo Sn + plimn—soo tn = (A 4+ p)a, so As + ut € Wirtu)a for all
A, p € R. For closure we must require that (A + p)a = a for all A\, u € R, which holds if and only if a=0. By the subspace

theorem Wy C W does indeed define a linear space.
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Let C C V be the set of infinite sequences with converging partial sums, i.e.

N—oo

o0 N
C={seV| —c>o<z:snd:ef lim an<oo}
n=1 n=1

d. Show that C is a linear space over R.
(Hint: Recall ¢ and argue why the subspace theorem applies.)

Terms in a converging series constitute a sequence that converges to zero, i.e. C C Wy. Consequently, since Wy is a
linear space, we may use the subspace theorem. If s = (s1,s2,s3,...) € C and t = (t1,t2,t3,...) € C, then we have
As+ put = (As1 + pt1, As2 + pta, Ass +uts,...) for all A\, € R. That this is an element of C follows from the fact that
limpy 0o 22]:1()\3+Ht)n =limy_ 00 ZnNzl()\sn—i-utn) =Alimpy_ 00 25:1 St limpy oo 25:1 ty, is finite for all A\, p € R.

L)

2. INNER ProDUCT (EXxAM JUNE 28, 2006, PROBLEM 1)

In this problem we consider a vector space V over the scalar field R, equipped with a real-valued
inner product, (| ):V xV — R : (v,w) — (v|lw). We henceforth refer to a real-valued inner
product simply as “inner product”.

Lemma. For each pair of vectors v, w € V the following Schwartz inequality holds:
[(v]w)] < vV {vlv) (w|w) .

a. Prove this lemma, exploiting the defining properties of the inner product.
(Hint: Consider the trivial inequality (A + w|Av +w) > 0 for given v,w € V and arbitrary A € R.
Why, by the way, is this inequality “trivial”?)

The inequality (Av 4+ w|Av + w) > 0 holds trivially, because by definition an inner product is non-negative definite on V.
Using bilinearity and symmetry we may rewrite the inequality as

(w[v)A2 + 2(v]w) A + (w]w) > 0.

The left hand side is apparently a non-negative quadratic function in A € R (the corresponding graph is a parabola pointing
downward and touching the A-axis in at most one point). The discriminant thus has to be non-positive:

4(vjw)? — 4(v|v)(w|w) < 0.

This immediately yields the Schwartz inequality.

Theorem. Every inner product ( | ) : V' x V — R induces a norm, || || : V — R, as follows:
def
loll = v/ (vlv).

This norm is referrred to as the norm induced by the inner product.

b. Prove this theorem, using the defining properties of the inner product.

1. For arbitrary v € V we have ||v]| def v/(vlv) > 0, in which the inequality follows from the fact that any inner
product satisfies (v|v) > 0. Moreover, equality holds if and only if v =0 € V as a consequence of non-degeneracy
of the inner product.



2. For arbitrary v € V en A € R we have ||Av]| def VWY £ /A2 (wfv) = A/ {v]v) def [Alllv]]. The identity
follows from bilinearity of the inner product.

*
3. For all v,w € V we have ||v + w||? def (v + wlv 4+ w) = (v|v) + 2(v|w) 4+ (w|w) < (V) 4+ 2/ WY wlw) + (w|w) def
[l12 + 2|jv|[|w] + Jlw]|? = (]|v]] + ||w]|])?. Therefore it follows that ||v 4+ w|| < ||v|| + ||w||. In * we have made use
of bilinearity and symmetry of the inner product, and in x of the Schwartz inequality.

(5) c. Prove that for all v,w € V we have

1 1
Zlo+wl? = 7l = wl? = (o)

Using the definition of the norm induced by the inner product and of bilinearity and symmetry of the inner product, we
may rewrite the left hand side as follows:

|2 def

1 1 1 1 1 1
lev+wH2**Hv*w| 7wt w) = (v —wlo —w) = 2 ((v|v) + 2(vlw) + (wlw)) -7 (o) = 2{vjw) + (wlw)) = (vw).

4

(5) d. Prove that for all v,w € V we have

1 1
Sllv+wl* + Sllv = wl* = ol* + [lw]*.

In analogy with the previous problem we rewrite terms on the left hand side as follows:
o def
[[v £ w||* = (v+wlvtw) = (vv) +2(v|w) + (w|w) .
Taking the average of the “4” and “—” terms, the mixed terms cancel:

1 1 def
Sl + wl® + Sl = wl® = (v|v) + (wlw) = [lo]|* + w]?.

(25) 3. ALGEBRAS

A so-called octonion, or Cayley’s number, can be written as a real linear combination of eight
“unit octonions”, eg, ey, ea, es, €4, €5, ¢ and e7, say. Together, these linear combinations
constitute the set

7
0= x:Za:iei | z; € R
i=0

We conjecture that O forms an 8-dimensional real vector space.

7 7
(10) a. Show that ifx:Za:iei € 0, y:Zyiei € O for z;,y; € R, and A € R, then z=x+ Ay € O.
i=0 i=0

We have z =z + A\y = ZZ:O Tie; + )\ZZ:O yie; = ZZ:O (z; + Ayi) e; € O.



In an attempt to turn the vector space O into an algebra we introduce multiplication. Its
defining rules can be deduced from Fanos’ plane (see Fig. 1). The following rules apply:

Figure 1: Fano’s plane.

e cach of the seven nodes in the diagram represents a unit octonion as indicated (eg is not
depicted in the diagram);

e if (a, b, c) is an ordered triple of unit octonions lying on a given line with the order specified
by the direction of the arrow, then ab = ¢ and ba = —c, together with cyclic permutations
(thus e.g. ejes = es, ejeg = —er, et cetera);

e ¢( is the multiplicative identity element (often written as “17);

e ecie; = —egforeachi=1,...,7.
With the usual distributive laws for products of linear combinations this completely defines the
multiplicative structure of Q. Example:
(36’0 + 61)(262 — 66) = bGegeg — 3egeg + 2e1e2 — e1eg = beo + 2e3 — 3eg + ey .
b. Complete the multiplication table in Fig. 2 (see appendix) with the help of Fano’s plane

and the stated rules.
(Attention: Do not forget to hand this in with your name and student ID on it.)

See Fig. 3 in the appendix.

The associator [a,b, c] of three octonions a,b,c € O is given by

[a, b, c] = (ab)c — a(be) .
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Recall that, according to our definition, associativity is one of the basic axioms of an algebra.
A linear space endowed with a multiplicative structure that fulfills this axiom is also referred
to as an associative algebra.

c. Show that O is not an associative algebra.

We need to find an example of a nonvanishing associator. There are multiple options. One example is [e1,e2,e4] =

(ere2)eq —e1(ezeq) = ezeq —er1eg = e7 + er = 2e7 # 0 € O, in which we have used Fig. 3.

[ )

4. DISTRIBUTION THEORY & FOURIER ANALYSIS

The Fourier transform 7' € .%/(R") of a distribution T’ € .%/(R") is defined as follows:
T(¢) = T(¢) for all test functions ¢ € & (R"), (%)

in which

o) = [ o) de.

The purpose of this problem is to motivate this definition.

To this end, consider any function f : R® — C of polynomial growth for which the Fourier
integral

fo)= [ et ja)ds

is well-defined and yields a function f: R™ — C of polynomial growth. Denote by Ty €.7'(R™)
the corresponding regular tempered distribution, i.e.

Ty(o) = | [f(z)o(z)da

Rn

for all test functions ¢ € .(R"). It is then natural to define T i %t T, ie.

Tro) < [ FO) o) de. (%)

Rn

a. Show that this definition implies T}(gb) = Tf(gg) for any ¢ € 7 (R").

(Hint: In (x) apply the Fourier reconstruction formula in the following form: ¢(¢) =

Following the hint (in *) we write

7o) 1300 S [ Foe©aes [ Fio) (Grr [ 06 Horde) de.

Interchanging the order of integration this is seen to be equivalent to

L. ((QTlm JRGE ds) b2 [ @) dwde =155,



In o the Fourier reconstruction formula has been used once more, this time for the function f.
This result justifies the general definition (x), even if T € .%/(R"™) is not regular.

As an example, consider the (non-regular) Dirac point distribution § € .#/(R™), defined by
d(¢) = ¢(0) for all ¢ € .7 (R™).

b. Use the general definition (x) to prove that 6 = T;. Here T; € .#/(R") is the regular
tempered distribution corresponding to the constant function 7 : R" - C: 2z — 1(z) = 1.

Using the distributional definition of the Fourier transform (in x) we find that

3(6) = 5(3) < d(0) L /¢ def/ 1(2) $(x) da Ty ().

Note that T uses a special case of the definition of the Fourier transform, viz.

Bw) = [ o do,

for w =0 € R™.

THE END
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Figure 2: Multiplication table.




X €0 €| €2 €3 €4 €5 €e e7
€0 €0 €| €2 €3 €4 €5 €6 e7
€| €| -€0 €3 -2 €5 -€4 | -€7 €e
€2 €2 -€3 | €0 €| €6 €7 -€4 | -€5
€3 €3 €2 -€| -€0 €7 -€6 €5 -C4
€4 €4 -€5 | -€6 | €7 | -€0 €| €2 €3
€5 €5 €4 -e7 €6 -€| -€0 | -€3 €2
€6 €6 €7 €4 -€5 | -€2 €3 -€0 | -€]
€7 €7 -€6 €5 €4 -€3 | -€2 €| -€0

Figure 3: Multiplication table completed.




