EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday April 11, 2014. Time: 09h00-12h00. Place: AUD 15.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or other equipment, is *not* allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

(35) 1. VECTOR SPACES

We consider the linear space V over \mathbb{R} consisting of all infinite sequences $s = (s_1, s_2, s_3, \ldots) \in \mathbb{R}^{\infty}$, furnished with the usual definitions of vector addition and scalar multiplication. You may take it for granted that V is indeed a linear space.

(5) **a.** Explain what is meant by "the usual definitions of vector addition and scalar multiplication".

The subset $W \subset V$ is defined as the set of converging sequences:

$$W = \{ s \in V \mid -\infty < \lim_{n \to \infty} s_n < \infty \}$$

(10) **b.** Show that W is itself a linear space over \mathbb{R} .

We subsequently consider the subsets $W_a \subset W$ for each fixed $a \in \mathbb{R}$, defined as follows:

$$W_a = \{ s \in W \mid \lim_{n \to \infty} s_n = a \}$$

(10) **c.** Does W_a define a linear space? Prove your statement.

Let $C \subset V$ be the set of infinite sequences with converging partial sums, i.e.

$$C = \{s \in V \mid -\infty < \sum_{n=1}^{\infty} s_n \stackrel{\text{def}}{=} \lim_{N \to \infty} \sum_{n=1}^{N} s_n < \infty\}$$

(10) **d.** Show that C is a linear space over \mathbb{R} . (*Hint:* Recall c and argue why the subspace theorem applies.)

*

(20) 2. INNER PRODUCT (EXAM JUNE 28, 2006, PROBLEM 1)

In this problem we consider a vector space V over the scalar field \mathbb{R} , equipped with a real-valued inner product, $\langle | \rangle : V \times V \to \mathbb{R} : (v, w) \mapsto \langle v | w \rangle$. We henceforth refer to a real-valued inner product simply as "inner product".

Lemma. For each pair of vectors $v, w \in V$ the following Schwartz inequality holds:

$$|\langle v|w\rangle| \le \sqrt{\langle v|v\rangle \langle w|w\rangle} \,.$$

(5) **a.** Prove this lemma, exploiting the defining properties of the inner product. (*Hint:* Consider the trivial inequality $\langle \lambda v + w | \lambda v + w \rangle \ge 0$ for given $v, w \in V$ and arbitrary $\lambda \in \mathbb{R}$. Why, by the way, is this inequality "trivial"?)

Theorem. Every inner product $\langle \mid \rangle : V \times V \to \mathbb{R}$ induces a norm, $|| \mid : V \to \mathbb{R}$, as follows:

$$\|v\| \stackrel{\mathrm{def}}{=} \sqrt{\langle v|v \rangle}$$

This norm is referred to as the norm induced by the inner product.

- (5) **b.** Prove this theorem, using the defining properties of the inner product.
- (5) **c.** Prove that for all $v, w \in V$ we have

$$\frac{1}{4} \|v + w\|^2 - \frac{1}{4} \|v - w\|^2 = \langle v | w \rangle.$$

(5) **d.** Prove that for all $v, w \in V$ we have

$$\frac{1}{2}\|v+w\|^2 + \frac{1}{2}\|v-w\|^2 = \|v\|^2 + \|w\|^2.$$

+

(25) **3.** Algebras

A so-called *octonion*, or *Cayley's number*, can be written as a real linear combination of eight "unit octonions", e_0 , e_1 , e_2 , e_3 , e_4 , e_5 , e_6 and e_7 , say. Together, these linear combinations constitute the set

$$\mathbb{O} = \left\{ x = \sum_{i=0}^{7} x_i e_i \mid x_i \in \mathbb{R} \right\}$$

We conjecture that \mathbb{O} forms an 8-dimensional real vector space.

(10) **a.** Show that if
$$x = \sum_{i=0}^{7} x_i e_i \in \mathbb{O}, y = \sum_{i=0}^{7} y_i e_i \in \mathbb{O}$$
 for $x_i, y_i \in \mathbb{R}$, and $\lambda \in \mathbb{R}$, then $z = x + \lambda y \in \mathbb{O}$.

In an attempt to turn the vector space \mathbb{O} into an algebra we introduce multiplication. Its defining rules can be deduced from *Fanos' plane* (see Fig. 1). The following rules apply:

Figure 1: Fano's plane.

- each of the seven nodes in the diagram represents a unit octonion as indicated (e_0 is not depicted in the diagram);
- if (a, b, c) is an ordered triple of unit octonions lying on a given line with the order specified by the direction of the arrow, then ab = c and ba = -c, together with cyclic permutations (thus e.g. $e_1e_2 = e_3$, $e_1e_6 = -e_7$, et cetera);
- e_0 is the multiplicative identity element (often written as "1");
- $e_i e_i = -e_0$ for each i = 1, ..., 7.

With the usual distributive laws for products of linear combinations this completely defines the multiplicative structure of \mathbb{O} . Example:

$$(3e_0 + e_1)(2e_2 - e_6) = 6e_0e_2 - 3e_0e_6 + 2e_1e_2 - e_1e_6 = 6e_2 + 2e_3 - 3e_6 + e_7.$$

(10) **b.** Complete the multiplication table in Fig. 2 (see appendix) with the help of Fano's plane and the stated rules.

(Attention: Do not forget to hand this in with your name and student ID on it.)

The associator [a, b, c] of three octonions $a, b, c \in \mathbb{O}$ is given by

$$[a, b, c] = (ab)c - a(bc).$$

Recall that, according to our definition, associativity is one of the basic axioms of an algebra. A linear space endowed with a multiplicative structure that fulfills this axiom is also referred to as an *associative algebra*.

(5) **c.** Show that \mathbb{O} is not an associative algebra.

÷

(20) 4. DISTRIBUTION THEORY & FOURIER ANALYSIS

The Fourier transform $\widehat{T} \in \mathscr{S}'(\mathbb{R}^n)$ of a distribution $T \in \mathscr{S}'(\mathbb{R}^n)$ is defined as follows:

$$\widehat{T}(\phi) = T(\widehat{\phi})$$
 for all test functions $\phi \in \mathscr{S}(\mathbb{R}^n)$, (\star)

in which

$$\widehat{\phi}(\omega) = \int_{\mathbb{R}^n} e^{-i\omega \cdot x} \,\phi(x) \, dx \, .$$

The purpose of this problem is to motivate this definition.

To this end, consider any function $f : \mathbb{R}^n \to \mathbb{C}$ of polynomial growth for which the Fourier integral

$$\widehat{f}(\omega) = \int_{\mathbb{R}^n} e^{-i\omega \cdot x} f(x) \, dx$$

is well-defined and yields a function $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ of polynomial growth. Denote by $T_f \in \mathscr{S}'(\mathbb{R}^n)$ the corresponding *regular* tempered distribution, i.e.

$$T_f(\phi) = \int_{\mathbb{R}^n} f(x) \,\phi(x) \,dx$$

for all test functions $\phi \in \mathscr{S}(\mathbb{R}^n)$. It is then natural to define $\widehat{T}_f \stackrel{\text{def}}{=} T_{\widehat{f}}$, i.e.

$$\widehat{T}_f(\phi) \stackrel{\text{def}}{=} \int_{\mathbb{R}^n} \widehat{f}(\xi) \,\phi(\xi) \,d\xi \,. \qquad (*)$$

(10) **a.** Show that this definition implies $\widehat{T}_f(\phi) = T_f(\widehat{\phi})$ for any $\phi \in \mathscr{S}(\mathbb{R}^n)$. (*Hint:* In (*) apply the Fourier reconstruction formula in the following form: $\phi(\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} e^{i\xi \cdot x} \widehat{\phi}(x) \, dx$.)

This result justifies the general definition (\star) , even if $T \in \mathscr{S}'(\mathbb{R}^n)$ is not regular.

As an example, consider the (non-regular) Dirac point distribution $\delta \in \mathscr{S}'(\mathbb{R}^n)$, defined by $\delta(\phi) = \phi(0)$ for all $\phi \in \mathscr{S}(\mathbb{R}^n)$.

(10) **b.** Use the general definition (*) to prove that $\hat{\delta} = T_1$. Here $T_1 \in \mathscr{S}'(\mathbb{R}^n)$ is the regular tempered distribution corresponding to the constant function $1 : \mathbb{R}^n \to \mathbb{C} : x \mapsto 1(x) = 1$.

THE END

Student ID:

Name:

×	e ₀	eı	e ₂	e3	e4	e ₅	e ₆	e7
e ₀	e ₀							
eı		-e ₀	e3				-e7	
e2			-e0					
e3				-e0				
e₄					-e ₀			
e5						-e ₀		
e ₆							-e ₀	
e 7								-e ₀

Figure	2:	Multiplication	table.
0		····	