EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday April 11, 2014. Time: 09h00-12h00. Place: AUD 15.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or other equipment, is not allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Spaces

We consider the linear space V over \mathbb{R} consisting of all infinite sequences $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in \mathbb{R}^{\infty}$, furnished with the usual definitions of vector addition and scalar multiplication. You may take it for granted that V is indeed a linear space.
(5) a. Explain what is meant by "the usual definitions of vector addition and scalar multiplication".

The subset $W \subset V$ is defined as the set of converging sequences:

$$
W=\left\{s \in V \mid-\infty<\lim _{n \rightarrow \infty} s_{n}<\infty\right\}
$$

b. Show that W is itself a linear space over \mathbb{R}.

We subsequently consider the subsets $W_{a} \subset W$ for each fixed $a \in \mathbb{R}$, defined as follows:

$$
W_{a}=\left\{s \in W \mid \lim _{n \rightarrow \infty} s_{n}=a\right\}
$$

c. Does W_{a} define a linear space? Prove your statement.

Let $C \subset V$ be the set of infinite sequences with converging partial sums, i.e.

$$
C=\left\{s \in V \mid-\infty<\sum_{n=1}^{\infty} s_{n} \stackrel{\text { def }}{=} \lim _{N \rightarrow \infty} \sum_{n=1}^{N} s_{n}<\infty\right\}
$$

(10) d. Show that C is a linear space over \mathbb{R}.
(Hint: Recall c and argue why the subspace theorem applies.)
(20) 2. Inner Product (Exam June 28, 2006, Problem 1)

In this problem we consider a vector space V over the scalar field \mathbb{R}, equipped with a real-valued inner product, $\langle\mid\rangle: V \times V \rightarrow \mathbb{R}:(v, w) \mapsto\langle v \mid w\rangle$. We henceforth refer to a real-valued inner product simply as "inner product".

Lemma. For each pair of vectors $v, w \in V$ the following Schwartz inequality holds:

$$
|\langle v \mid w\rangle| \leq \sqrt{\langle v \mid v\rangle\langle w \mid w\rangle} .
$$

(5) a. Prove this lemma, exploiting the defining properties of the inner product.
(Hint: Consider the trivial inequality $\langle\lambda v+w \mid \lambda v+w\rangle \geq 0$ for given $v, w \in V$ and arbitrary $\lambda \in \mathbb{R}$. Why, by the way, is this inequality "trivial"?)

Theorem. Every inner product $\langle\mid\rangle: V \times V \rightarrow \mathbb{R}$ induces a norm, $\|\|: V \rightarrow \mathbb{R}$, as follows:

$$
\|v\| \stackrel{\text { def }}{=} \sqrt{\langle v \mid v\rangle} .
$$

This norm is referrred to as the norm induced by the inner product.
(5) b. Prove this theorem, using the defining properties of the inner product.
c. Prove that for all $v, w \in V$ we have

$$
\begin{equation*}
\frac{1}{4}\|v+w\|^{2}-\frac{1}{4}\|v-w\|^{2}=\langle v \mid w\rangle . \tag{5}
\end{equation*}
$$

d. Prove that for all $v, w \in V$ we have

$$
\begin{equation*}
\frac{1}{2}\|v+w\|^{2}+\frac{1}{2}\|v-w\|^{2}=\|v\|^{2}+\|w\|^{2} . \tag{5}
\end{equation*}
$$

3. Algebras

A so-called octonion, or Cayley's number, can be written as a real linear combination of eight "unit octonions", $e_{0}, e_{1}, e_{2}, e_{3}, e_{4}, e_{5}, e_{6}$ and e_{7}, say. Together, these linear combinations constitute the set

$$
\mathbb{O}=\left\{x=\sum_{i=0}^{7} x_{i} e_{i} \mid x_{i} \in \mathbb{R}\right\}
$$

We conjecture that \mathbb{O} forms an 8 -dimensional real vector space.
a. Show that if $x=\sum_{i=0}^{7} x_{i} e_{i} \in \mathbb{O}, y=\sum_{i=0}^{7} y_{i} e_{i} \in \mathbb{O}$ for $x_{i}, y_{i} \in \mathbb{R}$, and $\lambda \in \mathbb{R}$, then $z=x+\lambda y \in \mathbb{O}$.

In an attempt to turn the vector space \mathbb{O} into an algebra we introduce multiplication. Its defining rules can be deduced from Fanos' plane (see Fig. 1). The following rules apply:

Figure 1: Fano's plane.

- each of the seven nodes in the diagram represents a unit octonion as indicated (e_{0} is not depicted in the diagram);
- if (a, b, c) is an ordered triple of unit octonions lying on a given line with the order specified by the direction of the arrow, then $a b=c$ and $b a=-c$, together with cyclic permutations (thus e.g. $e_{1} e_{2}=e_{3}, e_{1} e_{6}=-e_{7}$, et cetera);
- e_{0} is the multiplicative identity element (often written as "1");
- $e_{i} e_{i}=-e_{0}$ for each $i=1, \ldots, 7$.

With the usual distributive laws for products of linear combinations this completely defines the multiplicative structure of \mathbb{O}. Example:

$$
\left(3 e_{0}+e_{1}\right)\left(2 e_{2}-e_{6}\right)=6 e_{0} e_{2}-3 e_{0} e_{6}+2 e_{1} e_{2}-e_{1} e_{6}=6 e_{2}+2 e_{3}-3 e_{6}+e_{7}
$$

b. Complete the multiplication table in Fig. 2 (see appendix) with the help of Fano's plane and the stated rules.
(Attention: Do not forget to hand this in with your name and student ID on it.)
The associator $[a, b, c]$ of three octonions $a, b, c \in \mathbb{O}$ is given by

$$
[a, b, c]=(a b) c-a(b c)
$$

Recall that, according to our definition, associativity is one of the basic axioms of an algebra. A linear space endowed with a multiplicative structure that fulfills this axiom is also referred to as an associative algebra.
(5) c. Show that \mathbb{O} is not an associative algebra.

4. Distribution Theory \& Fourier Analysis

The Fourier transform $\widehat{T} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of a distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined as follows:

$$
\widehat{T}(\phi)=T(\widehat{\phi}) \quad \text { for all test functions } \phi \in \mathscr{S}\left(\mathbb{R}^{n}\right),
$$

in which

$$
\widehat{\phi}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} \phi(x) d x .
$$

The purpose of this problem is to motivate this definition.
To this end, consider any function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth for which the Fourier integral

$$
\widehat{f}(\omega)=\int_{\mathbb{R}^{n}} e^{-i \omega \cdot x} f(x) d x
$$

is well-defined and yields a function $\widehat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of polynomial growth. Denote by $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ the corresponding regular tempered distribution, i.e.

$$
T_{f}(\phi)=\int_{\mathbb{R}^{n}} f(x) \phi(x) d x
$$

for all test functions $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. It is then natural to define $\widehat{T}_{f} \stackrel{\text { def }}{=} T_{\widehat{f}}$, i.e.

$$
\begin{equation*}
\widehat{T}_{f}(\phi) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) \phi(\xi) d \xi \tag{*}
\end{equation*}
$$

(10) a. Show that this definition implies $\widehat{T}_{f}(\phi)=T_{f}(\widehat{\phi})$ for any $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$. (Hint: In $(*)$ apply the Fourier reconstruction formula in the following form: $\phi(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i \xi \cdot x} \widehat{\phi}(x) d x$.)

This result justifies the general definition (\star), even if $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is not regular.
As an example, consider the (non-regular) Dirac point distribution $\delta \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$, defined by $\delta(\phi)=\phi(0)$ for all $\phi \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.
(10) b. Use the general definition (\star) to prove that $\widehat{\delta}=T_{1}$. Here $T_{1} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is the regular tempered distribution corresponding to the constant function $1: \mathbb{R}^{n} \rightarrow \mathbb{C}: x \mapsto 1(x)=1$.

THE END

Figure 2: Multiplication table.

