EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 17, 2011. Time: 09h00-12h00. Place: AUD 4

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or other equipment, is not allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Space

We introduce the set $V=\mathbb{R}^{2}$ and furnish it with an addition and scalar multiplication operator, as follows. For all $(x, y) \in \mathbb{R}^{2},(u, v) \in \mathbb{R}^{2}$, and $\lambda \in \mathbb{R}$ we define

$$
(x, y)+(u, v)=(x+u, y+v) \quad \text { and } \quad \lambda \cdot(x, y)=(\lambda x, y) .
$$

Show that, given these definitions, V does not constitute a vector space.
(25) 2. Group Theory ${ }^{1}$

We define the following grey-value transformation: $T_{\gamma}: \mathbb{R} \rightarrow \mathbb{R}: s \mapsto T_{\gamma}(s) \stackrel{\text { def }}{=} e^{\gamma s}$, in which $\gamma \in \mathbb{R}$ is an arbitrary constant. We furnish the set of all transformations of this type, $G=\left\{T_{\gamma} \mid \gamma \in \mathbb{R}\right\}$, with an infix multiplication operator \times, as follows:

$$
\left(T_{\alpha} \times T_{\beta}\right)(s) \stackrel{\text { def }}{=} T_{\alpha}(s) T_{\beta}(s) \quad \text { for all } s \in \mathbb{R} .
$$

a. Prove that G constitutes a group. Proceed as follows:
(5) a1. Prove that G is closed with respect to multiplication, i.e. prove that $T_{\alpha}, T_{\beta} \in G$ implies $T_{\alpha} \times T_{\beta} \in G$ for all $\alpha, \beta \in \mathbb{R}$.
(5) a2. Prove that multiplication is associative on G, i.e. prove that $\left(T_{\alpha} \times T_{\beta}\right) \times T_{\gamma}=T_{\alpha} \times\left(T_{\beta} \times T_{\gamma}\right)$ for all $\alpha, \beta, \gamma \in \mathbb{R}$.
(5) a3. Prove that G has a unit element, i.e. that there exists a $\nu \in \mathbb{R}$ such that $T_{\nu} \times T_{\gamma}=$

[^0]$T_{\gamma} \times T_{\nu}=T_{\gamma}$ for all $\gamma \in \mathbb{R}$. Moreover, give the explicit value of $\nu \in \mathbb{R}$ corresponding to this unit element $T_{\nu} \in G$.
(5) a4. Finally prove that each element of G has an inverse, i.e. that for each $\eta \in \mathbb{R}$ there exists a $\theta \in \mathbb{R}$ such that $T_{\eta} \times T_{\theta}=T_{\theta} \times T_{\eta}=T_{\nu}$, in which $\nu \in \mathbb{R}$ denotes the parameter value corresponding to the unit element in part a3.
(5) b. Is G commutative? If yes, prove, if no, provide a counterexample.
(25) 3. Distribution Theory

The parameterized function $f_{a}: \mathbb{R} \rightarrow \mathbb{R}$, with parameter $a>0$, is defined as follows:

$$
f_{a}(x)=\left\{\begin{array}{cl}
\frac{1}{a^{2}}(-|x|+a) & \text { if } x \in[-a, a] \\
0 & \text { elsewhere }
\end{array}\right.
$$

(5) a. Sketch the graph of $y=f_{a}(x)$ in the $x y$-plane, and compute the area enclosed by this graph and the x-axis.

The regular tempered distribution $T_{f_{a}}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}$ associated with the function f_{a} is given by

$$
T_{f_{a}}(\phi)=\int_{-\infty}^{\infty} f_{a}(x) \phi(x) d x
$$

for any smooth test function $\phi \in \mathscr{S}(\mathbb{R})$.
b. Show that $T_{f_{a}}(\phi)=\frac{1}{a} \int_{-a}^{a} \phi(x) d x+\frac{1}{a^{2}} \int_{-a}^{0} x \phi(x) d x-\frac{1}{a^{2}} \int_{0}^{a} x \phi(x) d x$.

We now consider the limit of vanishing parameter $a \downarrow 0$. It is clear that the function f_{a} is ill-defined in this limit. We wish to investigate whether the regular tempered distribution $T_{f_{a}}$ does have a well-defined limit. To this end we recall Taylor's theorem, which allows us to use the following second order expansion for the test function around the origin:

$$
\begin{equation*}
\phi(x)=\phi(0)+\phi^{\prime}(0) x+\frac{1}{2} \phi^{\prime \prime}(\xi(x)) x^{2} \tag{*}
\end{equation*}
$$

for any $x \in(-a, a)$ and some $\xi(x)$ in-between x and 0 . The last term on the right hand side is referred to as the Lagrange remainder, and is sometimes simplified as $\mathcal{O}\left(x^{2}\right)$.

Finally, recall the Dirac distribution $\delta: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}$, defined by $\delta(\phi)=\phi(0)$ for all $\phi \in \mathscr{S}(\mathbb{R})$.
c. Use Eq. $(*)$ to show that $\lim _{a \downarrow 0} T_{f_{a}}=\delta$, by showing that $\lim _{a \downarrow 0} T_{f_{a}}(\phi)=\phi(0)$ for all $\phi \in \mathscr{S}(\mathbb{R})$. (Hint: Use b, and argue why you may ignore the Lagrange remainder in this limit.)

The Fourier convention used in this problem for functions of one variable is as follows:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega x} f(x) d x \text { whence } f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} \widehat{f}(\omega) d \omega .
$$

We indicate the Fourier transform of a function f by $\mathscr{F}(f)$, and the inverse Fourier transform of a function \widehat{f} by $\mathscr{F}^{-1}(\widehat{f})$.

You may use the following standard limit, in which $z \in \mathbb{C}$ with real part $\operatorname{Re} z \in \mathbb{R}$:

$$
\lim _{\operatorname{Re} z \rightarrow-\infty} e^{z}=0
$$

(5) a. Let \widehat{f}^{+}and \widehat{f}^{-}be any pair of \mathbb{C}-valued functions defined in Fourier space, such that $\widehat{f}^{-}(\omega)=$ $\widehat{f}^{+}(-\omega)$. Assuming that the Fourier inverses $f^{ \pm}=\mathscr{F}^{-1}\left(\widehat{f}^{ \pm}\right)$exist, show that $f^{-}(x)=f^{+}(-x)$.

We now consider the following particular instances:

$$
\widehat{f}_{s}^{+}(\omega)= \begin{cases}e^{-s \omega} & \text { if } \omega>0 \\ \frac{1}{2} & \text { if } \omega=0 \\ 0 & \text { if } \omega<0\end{cases}
$$

and $\widehat{f}_{s}^{-}(\omega)=\widehat{f}_{s}^{+}(-\omega)$, in which $s>0$ is a parameter.
(5) b. Give the explicit definition of $\widehat{f_{s}^{-}}(\omega)$ in a form similar to that of $\widehat{f}_{s}^{+}(\omega)$ in Eq. (\star).
(5) c1. Compute $f_{s}^{+}(x)=\left(\mathscr{F}^{-1}\left(\widehat{f}_{s}^{+}\right)\right)(x)$.
(5) c2. Compute $f_{s}^{-}(x)=\left(\mathscr{F}^{-1}\left(\widehat{f}_{s}^{-}\right)\right)(x)$.
(5) d. We define $\widehat{f_{s}}=\widehat{f}_{s}^{+}+\widehat{f}_{s}^{-}$. Give the explicit form of $\widehat{f_{s}}(\omega)$ and compute $f_{s}(x)=\left(\mathscr{F}^{-1}\left(\widehat{f_{s}}\right)\right)(x)$.
(5) e. Show that $\mathscr{F}\left(f_{s} * f_{t}\right)=\widehat{f}_{s+t}$.

THE END

[^0]: ${ }^{1}$ Exam June 28, 2006, problem 3.

