
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 17, 2011. Time: 09h00–12h00. Place: AUD 4

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student ID on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of problem companion
(“opgaven- en tentamenbundel”), calculator, laptop, or other equipment, is not allowed.

• You may provide your answers in Dutch or English.

GOOD LUCK!

1. Vector Space(20)

We introduce the set V = R2 and furnish it with an addition and scalar multiplication operator,
as follows. For all (x, y) ∈ R2, (u, v) ∈ R2, and λ ∈ R we define

(x, y) + (u, v) = (x+ u, y + v) and λ · (x, y) = (λx, y) .

Show that, given these definitions, V does not constitute a vector space.

♣

2. Group Theory1(25)

We define the following grey-value transformation: Tγ : R → R : s 7→ Tγ(s)
def
= eγs, in

which γ ∈ R is an arbitrary constant. We furnish the set of all transformations of this type,
G = {Tγ | γ ∈ R}, with an infix multiplication operator ×, as follows:

(Tα × Tβ) (s)
def
= Tα(s)Tβ(s) for all s ∈ R.

a. Prove that G constitutes a group. Proceed as follows:

a1. Prove that G is closed with respect to multiplication, i.e. prove that Tα, Tβ ∈ G implies(5)
Tα × Tβ ∈ G for all α, β ∈ R.

a2. Prove that multiplication is associative on G, i.e. prove that (Tα×Tβ)×Tγ = Tα×(Tβ×Tγ)(5)
for all α, β, γ ∈ R.

a3. Prove that G has a unit element, i.e. that there exists a ν ∈ R such that Tν × Tγ =(5)

1Exam June 28, 2006, problem 3.
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Tγ × Tν = Tγ for all γ ∈ R. Moreover, give the explicit value of ν ∈ R corresponding to this
unit element Tν ∈ G.

a4. Finally prove that each element of G has an inverse, i.e. that for each η ∈ R there exists(5)
a θ ∈ R such that Tη × Tθ = Tθ × Tη = Tν , in which ν ∈ R denotes the parameter value
corresponding to the unit element in part a3.

b. Is G commutative? If yes, prove, if no, provide a counterexample.(5)

♣

3. Distribution Theory(25)

The parameterized function fa : R → R, with parameter a > 0, is defined as follows:

fa(x) =

{ 1

a2
(−|x|+ a) if x ∈ [−a, a]

0 elsewhere

a. Sketch the graph of y = fa(x) in the xy-plane, and compute the area enclosed by this graph(5)
and the x-axis.

The regular tempered distribution Tfa : S (R) → R associated with the function fa is given by

Tfa(ϕ) =

∫ ∞

−∞
fa(x)ϕ(x) dx

for any smooth test function ϕ ∈ S (R).

b. Show that Tfa(ϕ) =
1

a

∫ a

−a
ϕ(x) dx+

1

a2

∫ 0

−a
xϕ(x) dx− 1

a2

∫ a

0
xϕ(x) dx.(10)

We now consider the limit of vanishing parameter a ↓ 0. It is clear that the function fa is
ill-defined in this limit. We wish to investigate whether the regular tempered distribution Tfa

does have a well-defined limit. To this end we recall Taylor’s theorem, which allows us to use
the following second order expansion for the test function around the origin:

ϕ(x) = ϕ(0) + ϕ′(0)x+
1

2
ϕ′′(ξ(x))x2 , (∗)

for any x ∈ (−a, a) and some ξ(x) in-between x and 0. The last term on the right hand side is
referred to as the Lagrange remainder, and is sometimes simplified as O(x2).

Finally, recall the Dirac distribution δ : S (R) → R, defined by δ(ϕ) = ϕ(0) for all ϕ ∈ S (R).

c. Use Eq. (∗) to show that lim
a↓0

Tfa = δ, by showing that lim
a↓0

Tfa(ϕ) = ϕ(0) for all ϕ ∈ S (R).(10)

(Hint: Use b, and argue why you may ignore the Lagrange remainder in this limit.)

♣
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4. Fourier Transformation(30)

The Fourier convention used in this problem for functions of one variable is as follows:

f̂(ω) =

∫ ∞

−∞
e−iωx f(x) dx whence f(x) =

1

2π

∫ ∞

−∞
eiωx f̂(ω) dω .

We indicate the Fourier transform of a function f by F (f), and the inverse Fourier transform
of a function f̂ by F−1(f̂).

You may use the following standard limit, in which z ∈ C with real part Re z ∈ R:

lim
Re z→−∞

ez = 0 .

a. Let f̂+ and f̂− be any pair of C-valued functions defined in Fourier space, such that f̂−(ω) =(5)
f̂+(−ω). Assuming that the Fourier inverses f± = F−1(f̂±) exist, show that f−(x) = f+(−x).

We now consider the following particular instances:

f̂+
s (ω) =


e−sω if ω > 0
1
2 if ω = 0 (⋆)
0 if ω < 0

and f̂−
s (ω) = f̂+

s (−ω), in which s > 0 is a parameter.

b. Give the explicit definition of f̂−
s (ω) in a form similar to that of f̂+

s (ω) in Eq. (⋆).(5)

c1. Compute f+
s (x) =

(
F−1(f̂+

s )
)
(x).(5)

c2. Compute f−
s (x) =

(
F−1(f̂−

s )
)
(x).(5)

d. We define f̂s = f̂+
s +f̂−

s . Give the explicit form of f̂s(ω) and compute fs(x) =
(
F−1(f̂s)

)
(x).(5)

e. Show that F (fs ∗ ft) = f̂s+t.(5)

THE END
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