
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00–17h00. Place: HG 10.01 C.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student identification
number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

• You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

1. Consider the collection of square matrices,(35)

Mn =

X =

 X11 . . . X1n
...

...
Xn1 . . . Xnn


∣∣∣∣∣∣∣ Xij ∈ K

 , in which K denotes either R or C.

a. Provide explicit definitions for the operators ⊗ : K ×Mn → Mn (“scalar multiplication”)(21
2)

and ⊕ : Mn×Mn →Mn (“vector addition”) needed to turn this set into a linear space over K.
Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

Henceforth we write λX instead of λ⊗X and X+Y instead of X⊕Y for λ ∈ K and X,Y ∈Mn.
Furthermore, let L (Mn,Mn) denote the linear space of linear operators on Mn.

b. Provide explicit definitions for the operators ⊗ : R × L (Mn,Mn) → L (Mn,Mn) and(21
2)
⊕ : L (Mn,Mn) × L (Mn,Mn) → L (Mn,Mn) that justifies the claim that L (Mn,Mn) is
a linear space over K. Make sure to use parentheses so as to avoid confusion on operator
precedence, if necessary.

Again we write λA instead of λ⊗A and A+B instead of A⊕B for λ ∈ K and A,B ∈ L (Mn,Mn).
With X as above, the transposed matrix XT and the conjugate matrix X† are defined as

XT =

 X11 . . . Xn1
...

...
X1n . . . Xnn

 respectively X† =

 X∗11 . . . X∗n1
...

...
X∗1n . . . X∗nn

 .

Here, ∗ denotes complex conjugation, i.e. if z = x+ iy for x, y ∈ R, then z∗ = x− iy.

Furthermore, the operators P± : Mn →Mn and Q± : Mn →Mn are defined by

P±(X) =
1

2

(
X ±XT

)
respectively Q±(X) =

1

2

(
X ±X†

)
.
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c1. Show that matrix transposition, T : Mn →Mn : X 7→ T(X)
def
= XT, is a linear operator.(21

2)

c2. Show that matrix conjugation, C : Mn →Mn : X 7→ C(X)
def
= X†, is not a linear operator.(21

2)

c3. Show that P± : Mn →Mn are linear operators.(21
2)

c4. Show that Q± : Mn →Mn are not linear operators.(21
2)

The null matrix in Mn is indicated by Ω, i.e. Ωij = 0 for all i, j = 1, . . . , n. The identity
matrix in Mn is indicated by I, i.e. Iij = 1 if i = j = 1, . . . , n, otherwise Iij = 0. The null
operator N : Mn → Mn is defined by N(X) = Ω ∈ Mn for all X ∈ Mn. The identity operator
id : Mn → Mn is defined by id(X) = X for all X ∈ Mn. Operator composition (i.e. successive
application of operators in right-to-left order) is indicated by the infix operator ◦.

d1. Show that P+ + P− = id.(21
2)

d2. Show that P+ − P− = T.(21
2)

d3. Show that P+ ◦ P− = P− ◦ P+ = N.(21
2)

d4. Show that P± ◦ P± = P±.(21
2)

Consider the following binary operator: 〈 | 〉 : Mn×Mn → K : (X,Y ) 7→ 〈X|Y 〉 def= trace(XTY ).
Here, trace : Mn → K is the (linear) trace operator, defined as summation of diagonal elements:

traceX =
n∑
i=1

Xii .

e1. Show that if K = R then 〈 | 〉 : Mn ×Mn → R defines a real inner product.(21
2)

e2. Show that if K = C then 〈 | 〉 : Mn ×Mn → C does not define a complex inner product.(21
2)

f. How would you modify the definition of 〈 | 〉 : Mn ×Mn → C in the complex case, K = C,(21
2)

such that it does define a complex inner product? You may state your definition without proof.

In the remainder of this problem we restrict ourselves to K = R. In particular, we consider the
case of the real inner product, recall e1.

Operator transposition, T : L (Mn,Mn)→ L (Mn,Mn), is implicitly defined by the identity

〈AT(X)|Y 〉 def= 〈X|A(Y )〉 for all A ∈ L (Mn,Mn) and X,Y ∈Mn.

g. Show that PT
± = P±. (Together with d4 this shows that P± are orthogonal projections.)(21

2)

♣
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2. Consider the Laplace equation for the function u ∈ C∞(R2):(321
2)

∆u = 0 in which ∆ =
∂2

∂x2
+

∂2

∂y2
.

Our aim is to find a first order partial differential equation, such that its solutions also satisfy
the Laplace equation. To this end we introduce a real linear space V , the dimension n ≥ 2 of
which is yet to be determined, and furnish it with an additional operator henceforth referred
to as “multiplication”. The product of v, w ∈ V is then simply written as vw ∈ V . In this way
V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz.
for all u, v, w ∈ V and λ, µ ∈ R:

• (uv)w = u(vw),

• u(v + w) = uv + uw,

• (u+ v)w = uw + vw,

• λ(uv) = (λu)v = u(λv),

(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)

We now attempt to decompose the Laplacian operator as follows:

∆ =

(
a
∂

∂x
+ b

∂

∂y

)(
a
∂

∂x
+ b

∂

∂y

)
.

Here a, b ∈ V are two fixed, independent elements (vectors). For consistency we assume that
u(x, y) ∈ V (instead of our original assumption u(x, y) ∈ R).

a. Show that V is not commutative, and that it must possess an identity element 1 ∈ V that
has to be formally identified with the scalar number 1 ∈ R, by showing that

a1. ab+ ba = 0,(21
2)

a2. a2 = b2 = 1.(21
2)

b. Show that the (unordered) pair (a, b) satisfying the conditions of a1 and a2 is not unique.(5)
(Hint: Suppose a′ = a1a+ a2b, b

′ = b1a+ b2b for some a1, a2, b1, b2 ∈ R.)

c. Suppose v, w ∈ span{a, b} ⊂ V are such that, say, v = v1a + v2b and w = w1a + w2b for
some v1, v2, w1, w2 ∈ R. Compute

c1. vw + wv,(21
2)

c2. v2.(21
2)

d. Show that dimV > 2.(21
2)

(Hint: Alternatively, show that span{a, b} ⊂ V is not closed under multiplication.)
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We add two more independent elements to the set {a, b}, viz. the unit element 1 and the element
ab, and define V = span{1, a, b, ab}. Instead of λ 1 + µa + ν b + ρ ab (λ, µ, ν, ρ ∈ R) we write
λ+ µa+ ν b+ ρ ab for an arbitrary element of V .

e. Show that V is closed under multiplication, i.e. show that if v = v0 + v1a+ v2b+ v3ab ∈ V ,(5)
w = w0 + w1a+ w2b+ w3ab ∈ V , then also vw ∈ V .

We now try to realize elements of V in terms of real-valued 2×2-matrices. To this end we
hypothesize that

V ⊂M2 =

{(
a11 a12
a21 a22

) ∣∣∣∣ aij ∈ R
}
.

f. Construct explicit matrices A,B ∈M2 corresponding to a, b ∈ V in the sense that(5)

• AB +BA = Ω,

• A2 = B2 = I.

Here Ω ∈ M2 is the null matrix, corresponding to the null element 0 ∈ V , and I ∈ M2 is the
identity matrix, corresponding to the identity element 1 ∈ V .
(Hint: As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)

g. Given A and B as determined under f, what is the matrix form v0+v1A+v2B+v3AB ∈M2(21
2)

corresponding to a general element v0 + v1a+ v2b+ v3ab ∈ V ?

h. Show that if u : R2 → V satisfies the first order partial differential equation(21
2)

a
∂u

∂x
+ b

∂u

∂y
= 0 ,

then it is also a solution of ∆u = 0.

♣

3. Consider a strictly monotonic, continuously differentiable function f : R → R : x 7→ f(x),(5)
with f ′(x) > 0 for all x ∈ R, and f(±∞) = ±∞. The inverse function theorem states that
such a function has an inverse, f−1 : R → R : y 7→ f−1(y), such that (f−1 ◦ f)(x) = x for all
x ∈ R, and (f ◦ f−1)(y) = y for all y ∈ R.

a. Argue why the equation f(x) = 0 has precisely one solution for x ∈ R (x = a, say).(21
2)

(Hint: Sketch the graph of such a function f .)

b. Show that δ(f(x)) =
δ(x− a)

f ′(a)
, in which a ∈ R is the unique point for which f(a) = 0.(21

2)

(Hint: Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary

test function φ ∈ S (R), i.e.
∫∞
−∞ δ(f(x))φ(x) dx, and apply substitution of variables.)

♣
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4. In this problem we consider a synthetic signal f : R −→ R, defined as follows:(271
2)

f(x) =


0 if x < 0
1
2 if x = 0
1 if x > 0

Furthermore, we define the so-called Poisson filter φσ : R −→ R for σ > 0 as

φσ(x) =
1

π

σ

x2 + σ2
.

In this problem you may use the following standard formulas (cf. the graph shown below):∫
1

1 + x2
dx = arctanx+ c resp. lim

x→±∞
arctanx = ±π

2
.
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Throughout this problem we employ the following Fourier convention:

û(ω) = F(u)(ω) =

∫ ∞
−∞

e−iωx u(x) dx whence u(x) = F−1(û)(x) =
1

2π

∫ ∞
−∞

eiωx û(ω) dω .

a. Show that
∫∞
−∞ φσ(x) dx = 1 regardless of the value of σ.(21

2)

b1. Prove that for any, sufficiently smooth, integrable filter φ we have:(21
2)

(f ∗ φ)(x) =

∫ x

−∞
φ(ξ) dξ .

b2. Show by explicit computation that the convolution product f ∗ φσ is given by(21
2)

(f ∗ φσ) (x) =
1

2
+

1

π
arctan

x

σ
.

c. Show that the Fourier transform f̂ = F(f) of f is given by(5)

f̂(ω) =
1

iω
.

(Hint: From part b1 it follows that d
dx (f ∗ φ) (x) = φ(x). Subject this to Fourier transformation.)
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d. Without proof we state the Fourier transform φ̂σ = F(φσ) of φσ:

φ̂σ(ω) = e−σ|ω| .

d1. Explain the behaviour of φ̂σ(ω) for ω → 0 in terms of properties of the corresponding(21
2)

spatial filter φσ(x).
(Hint: Cf. problem a.)

d2. Explain the behaviour of f̂(ω) for ω → 0 in terms of properties of the corresponding spatial(21
2)

signal f(x).

e. Determine the function F(f ∗ φσ).(5)

f. Show that lim
σ→0

f ∗ φσ = f . Hint: Take the “Fourier route”.(21
2)

g. Prove the claim under d: φ̂σ(ω) = e−σ|ω|.(21
2)

(Hint: Apply the inverse Fourier transform.)

THE END
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