EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00-17h00. Place: HG 10.01 C.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

(35)

1. Consider the collection of square matrices,

$$
\mathbb{M}_{n}=\left\{\left.X=\left(\begin{array}{ccc}
X_{11} & \ldots & X_{1 n} \\
\vdots & & \vdots \\
X_{n 1} & \ldots & X_{n n}
\end{array}\right) \right\rvert\, X_{i j} \in \mathbb{K}\right\}, \text { in which } \mathbb{K} \text { denotes either } \mathbb{R} \text { or } \mathbb{C}
$$

$\left(2 \frac{1}{2}\right)$ a. Provide explicit definitions for the operators $\otimes: \mathbb{K} \times \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ ("scalar multiplication") and $\oplus: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ ("vector addition") needed to turn this set into a linear space over \mathbb{K}. Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

Henceforth we write λX instead of $\lambda \otimes X$ and $X+Y$ instead of $X \oplus Y$ for $\lambda \in \mathbb{K}$ and $X, Y \in \mathbb{M}_{n}$. Furthermore, let $\mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ denote the linear space of linear operators on \mathbb{M}_{n}.
$\left(2 \frac{1}{2}\right)$
b. Provide explicit definitions for the operators $\otimes: \mathbb{R} \times \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \rightarrow \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ and $\oplus: \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \times \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \rightarrow \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ that justifies the claim that $\mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$ is a linear space over \mathbb{K}. Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

Again we write λA instead of $\lambda \otimes A$ and $A+B$ instead of $A \oplus B$ for $\lambda \in \mathbb{K}$ and $A, B \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$. With X as above, the transposed matrix X^{T} and the conjugate matrix X^{\dagger} are defined as

$$
X^{\mathrm{T}}=\left(\begin{array}{ccc}
X_{11} & \ldots & X_{n 1} \\
\vdots & & \vdots \\
X_{1 n} & \ldots & X_{n n}
\end{array}\right) \quad \text { respectively } \quad X^{\dagger}=\left(\begin{array}{ccc}
X_{11}^{*} & \ldots & X_{n 1}^{*} \\
\vdots & & \vdots \\
X_{1 n}^{*} & \ldots & X_{n n}^{*}
\end{array}\right)
$$

Here, $*$ denotes complex conjugation, i.e. if $z=x+i y$ for $x, y \in \mathbb{R}$, then $z^{*}=x-i y$.
Furthermore, the operators $\mathbb{P}_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ and $\mathrm{Q}_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ are defined by

$$
\mathrm{P}_{ \pm}(X)=\frac{1}{2}\left(X \pm X^{\mathrm{T}}\right) \quad \text { respectively } \quad \mathrm{Q}_{ \pm}(X)=\frac{1}{2}\left(X \pm X^{\dagger}\right)
$$

$$
\left(2 \frac{1}{2}\right)
$$

c4. Show that $Q_{ \pm}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ are not linear operators.
The null matrix in \mathbb{M}_{n} is indicated by Ω, i.e. $\Omega_{i j}=0$ for all $i, j=1, \ldots, n$. The identity matrix in \mathbb{M}_{n} is indicated by I, i.e. $I_{i j}=1$ if $i=j=1, \ldots, n$, otherwise $I_{i j}=0$. The null operator $\mathrm{N}: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is defined by $\mathrm{N}(X)=\Omega \in \mathbb{M}_{n}$ for all $X \in \mathbb{M}_{n}$. The identity operator id $: \mathbb{M}_{n} \rightarrow \mathbb{M}_{n}$ is defined by $\operatorname{id}(X)=X$ for all $X \in \mathbb{M}_{n}$. Operator composition (i.e. successive application of operators in right-to-left order) is indicated by the infix operator \circ.
d1. Show that $P_{+}+P_{-}=i d$.
d2. Show that $P_{+}-P_{-}=T$.
d3. Show that $P_{+} \circ P_{-}=P_{-} \circ P_{+}=N$.
$\left(2 \frac{1}{2}\right)$
d4. Show that $\mathrm{P}_{ \pm} \circ \mathrm{P}_{ \pm}=\mathrm{P}_{ \pm}$.
Consider the following binary operator: $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{K}:(X, Y) \mapsto\langle X \mid Y\rangle \stackrel{\text { def }}{=} \operatorname{trace}\left(X^{\mathrm{T}} Y\right)$. Here, trace : $\mathbb{M}_{n} \rightarrow \mathbb{K}$ is the (linear) trace operator, defined as summation of diagonal elements:

$$
\begin{equation*}
\operatorname{trace} X=\sum_{i=1}^{n} X_{i i} \tag{1}
\end{equation*}
$$

f. How would you modify the definition of $\langle\mid\rangle: \mathbb{M}_{n} \times \mathbb{M}_{n} \rightarrow \mathbb{C}$ in the complex case, $\mathbb{K}=\mathbb{C}$, such that it does define a complex inner product? You may state your definition without proof.

In the remainder of this problem we restrict ourselves to $\mathbb{K}=\mathbb{R}$. In particular, we consider the case of the real inner product, recall e1.

Operator transposition, $\mathrm{T}: \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \rightarrow \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right)$, is implicitly defined by the identity

$$
\left\langle A^{\mathrm{T}}(X) \mid Y\right\rangle \stackrel{\text { def }}{=}\langle X \mid A(Y)\rangle \quad \text { for all } A \in \mathscr{L}\left(\mathbb{M}_{n}, \mathbb{M}_{n}\right) \text { and } X, Y \in \mathbb{M}_{n}
$$

$\left(2 \frac{1}{2}\right)$ g. Show that $\mathrm{P}_{ \pm}^{\mathrm{T}}=\mathrm{P}_{ \pm}$. (Together with $\mathbf{d} 4$ this shows that $\mathrm{P}_{ \pm}$are orthogonal projections.)
(32 $\frac{1}{2}$) 2. Consider the Laplace equation for the function $u \in C^{\infty}\left(\mathbb{R}^{2}\right)$:

$$
\Delta u=0 \quad \text { in which } \Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} .
$$

Our aim is to find a first order partial differential equation, such that its solutions also satisfy the Laplace equation. To this end we introduce a real linear space V, the dimension $n \geq 2$ of which is yet to be determined, and furnish it with an additional operator henceforth referred to as "multiplication". The product of $v, w \in V$ is then simply written as $v w \in V$. In this way V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz. for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$:

- $(u v) w=u(v w)$,
- $u(v+w)=u v+u w$,
- $(u+v) w=u w+v w$,
- $\lambda(u v)=(\lambda u) v=u(\lambda v)$,
(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)
We now attempt to decompose the Laplacian operator as follows:

$$
\Delta=\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right)\left(a \frac{\partial}{\partial x}+b \frac{\partial}{\partial y}\right) .
$$

Here $a, b \in V$ are two fixed, independent elements (vectors). For consistency we assume that $u(x, y) \in V$ (instead of our original assumption $u(x, y) \in \mathbb{R})$.
a. Show that V is not commutative, and that it must possess an identity element $1 \in V$ that has to be formally identified with the scalar number $1 \in \mathbb{R}$, by showing that
a1. $a b+b a=0$,
a2. $a^{2}=b^{2}=1$.
(5) b. Show that the (unordered) pair (a, b) satisfying the conditions of a1 and $\mathbf{a} \mathbf{2}$ is not unique. (Hint: Suppose $a^{\prime}=a_{1} a+a_{2} b, b^{\prime}=b_{1} a+b_{2} b$ for some $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$.)
c. Suppose $v, w \in \operatorname{span}\{a, b\} \subset V$ are such that, say, $v=v_{1} a+v_{2} b$ and $w=w_{1} a+w_{2} b$ for some $v_{1}, v_{2}, w_{1}, w_{2} \in \mathbb{R}$. Compute
c2. v^{2}.
d. Show that $\operatorname{dim} V>2$.
(Hint: Alternatively, show that $\operatorname{span}\{a, b\} \subset V$ is not closed under multiplication.)

We add two more independent elements to the set $\{a, b\}$, viz. the unit element 1 and the element $a b$, and define $V=\operatorname{span}\{1, a, b, a b\}$. Instead of $\lambda 1+\mu a+\nu b+\rho a b(\lambda, \mu, \nu, \rho \in \mathbb{R})$ we write $\lambda+\mu a+\nu b+\rho a b$ for an arbitrary element of V.
e. Show that V is closed under multiplication, i.e. show that if $v=v_{0}+v_{1} a+v_{2} b+v_{3} a b \in V$, $w=w_{0}+w_{1} a+w_{2} b+w_{3} a b \in V$, then also $v w \in V$.

We now try to realize elements of V in terms of real-valued 2×2-matrices. To this end we hypothesize that

$$
V \subset \mathbb{M}_{2}=\left\{\left.\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \right\rvert\, a_{i j} \in \mathbb{R}\right\} .
$$

(5) f. Construct explicit matrices $A, B \in \mathbb{M}_{2}$ corresponding to $a, b \in V$ in the sense that

- $A B+B A=\Omega$,
- $A^{2}=B^{2}=I$.

Here $\Omega \in \mathbb{M}_{2}$ is the null matrix, corresponding to the null element $0 \in V$, and $I \in \mathbb{M}_{2}$ is the identity matrix, corresponding to the identity element $1 \in V$.
(Hint: As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)
g. Given A and B as determined under \mathbf{f}, what is the matrix form $v_{0}+v_{1} A+v_{2} B+v_{3} A B \in \mathbb{M}_{2}$ corresponding to a general element $v_{0}+v_{1} a+v_{2} b+v_{3} a b \in V$?
h. Show that if $u: \mathbb{R}^{2} \rightarrow V$ satisfies the first order partial differential equation

$$
\begin{equation*}
a \frac{\partial u}{\partial x}+b \frac{\partial u}{\partial y}=0 \tag{1}
\end{equation*}
$$

then it is also a solution of $\Delta u=0$.
(5) 3. Consider a strictly monotonic, continuously differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)$, with $f^{\prime}(x)>0$ for all $x \in \mathbb{R}$, and $f(\pm \infty)= \pm \infty$. The inverse function theorem states that such a function has an inverse, $f^{-1}: \mathbb{R} \rightarrow \mathbb{R}: y \mapsto f^{-1}(y)$, such that $\left(f^{-1} \circ f\right)(x)=x$ for all $x \in \mathbb{R}$, and $\left(f \circ f^{-1}\right)(y)=y$ for all $y \in \mathbb{R}$.
$\left(2 \frac{1}{2}\right)$ a. Argue why the equation $f(x)=0$ has precisely one solution for $x \in \mathbb{R}(x=a$, say $)$. (Hint: Sketch the graph of such a function f.)
$\left(2 \frac{1}{2}\right)$ b. Show that $\delta(f(x))=\frac{\delta(x-a)}{f^{\prime}(a)}$, in which $a \in \mathbb{R}$ is the unique point for which $f(a)=0$.
(Hint: Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary test function $\phi \in \mathscr{S}(\mathbb{R})$, i.e. $\int_{-\infty}^{\infty} \delta(f(x)) \phi(x) d x$, and apply substitution of variables.)
$\left(\mathbf{2 7} \frac{\mathbf{1}}{\mathbf{2}}\right)$ 4. In this problem we consider a synthetic signal $f: \mathbb{R} \longrightarrow \mathbb{R}$, defined as follows:

$$
f(x)= \begin{cases}0 & \text { if } x<0 \\ \frac{1}{2} & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Furthermore, we define the so-called Poisson filter $\phi_{\sigma}: \mathbb{R} \longrightarrow \mathbb{R}$ for $\sigma>0$ as

$$
\phi_{\sigma}(x)=\frac{1}{\pi} \frac{\sigma}{x^{2}+\sigma^{2}} .
$$

In this problem you may use the following standard formulas (cf. the graph shown below):

$$
\int \frac{1}{1+x^{2}} d x=\arctan x+c \quad \text { resp. } \quad \lim _{x \rightarrow \pm \infty} \arctan x= \pm \frac{\pi}{2}
$$

Throughout this problem we employ the following Fourier convention:

$$
\widehat{u}(\omega)=\mathcal{F}(u)(\omega)=\int_{-\infty}^{\infty} e^{-i \omega x} u(x) d x \quad \text { whence } \quad u(x)=\mathcal{F}^{-1}(\widehat{u})(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega x} \widehat{u}(\omega) d \omega .
$$

($2 \frac{1}{2}$)
a. Show that $\int_{-\infty}^{\infty} \phi_{\sigma}(x) d x=1$ regardless of the value of σ.
b1. Prove that for any, sufficiently smooth, integrable filter ϕ we have:

$$
(f * \phi)(x)=\int_{-\infty}^{x} \phi(\xi) d \xi
$$

b2. Show by explicit computation that the convolution product $f * \phi_{\sigma}$ is given by

$$
\begin{equation*}
\left(f * \phi_{\sigma}\right)(x)=\frac{1}{2}+\frac{1}{\pi} \arctan \frac{x}{\sigma} \tag{1}
\end{equation*}
$$

c. Show that the Fourier transform $\widehat{f}=\mathcal{F}(f)$ of f is given by

$$
\begin{equation*}
\widehat{f}(\omega)=\frac{1}{i \omega} . \tag{5}
\end{equation*}
$$

(Hint: From part b1 it follows that $\frac{d}{d x}(f * \phi)(x)=\phi(x)$. Subject this to Fourier transformation.)
d. Without proof we state the Fourier transform $\widehat{\phi}_{\sigma}=\mathcal{F}\left(\phi_{\sigma}\right)$ of ϕ_{σ} :

$$
\widehat{\phi}_{\sigma}(\omega)=e^{-\sigma|\omega|} .
$$

(2 $\frac{1}{2}$)
d1. Explain the behaviour of $\widehat{\phi}_{\sigma}(\omega)$ for $\omega \rightarrow 0$ in terms of properties of the corresponding spatial filter $\phi_{\sigma}(x)$.
(Hint: Cf. problem a.)
($2 \frac{1}{2}$) d2. Explain the behaviour of $\widehat{f}(\omega)$ for $\omega \rightarrow 0$ in terms of properties of the corresponding spatial signal $f(x)$.
(5) e. Determine the function $\mathcal{F}\left(f * \phi_{\sigma}\right)$.
$\left(2 \frac{1}{2}\right)$ f. Show that $\lim _{\sigma \rightarrow 0} f * \phi_{\sigma}=f$. Hint: Take the "Fourier route".
$\left(2 \frac{1}{2}\right)$ g. Prove the claim under d: $\widehat{\phi}_{\sigma}(\omega)=e^{-\sigma|\omega|}$. (Hint: Apply the inverse Fourier transform.)

THE END

© 2009 Luc Florack, Eindhoven University of Technology

