EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 22, 2009. Time: 14h00–17h00. Place: HG 10.01 C.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is *not* allowed.
- You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

(35) 1. Consider the collection of square matrices,

$$\mathbb{M}_{n} = \left\{ X = \begin{pmatrix} X_{11} & \dots & X_{1n} \\ \vdots & & \vdots \\ X_{n1} & \dots & X_{nn} \end{pmatrix} \middle| X_{ij} \in \mathbb{K} \right\}, \text{ in which } \mathbb{K} \text{ denotes either } \mathbb{R} \text{ or } \mathbb{C}.$$

(2¹/₂) **a.** Provide explicit definitions for the operators $\otimes : \mathbb{K} \times \mathbb{M}_n \to \mathbb{M}_n$ ("scalar multiplication") and $\oplus : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{M}_n$ ("vector addition") needed to turn this set into a linear space over \mathbb{K} . Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

Henceforth we write λX instead of $\lambda \otimes X$ and X + Y instead of $X \oplus Y$ for $\lambda \in \mathbb{K}$ and $X, Y \in \mathbb{M}_n$. Furthermore, let $\mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ denote the linear space of linear operators on \mathbb{M}_n .

 $(2\frac{1}{2})$ **b.** Provide explicit definitions for the operators $\otimes : \mathbb{R} \times \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \to \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ and $\oplus : \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \times \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \to \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ that justifies the claim that $\mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ is a linear space over \mathbb{K} . Make sure to use parentheses so as to avoid confusion on operator precedence, if necessary.

Again we write λA instead of $\lambda \otimes A$ and A+B instead of $A \oplus B$ for $\lambda \in \mathbb{K}$ and $A, B \in \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$. With X as above, the transposed matrix X^{T} and the conjugate matrix X^{\dagger} are defined as

$$X^{\mathrm{T}} = \begin{pmatrix} X_{11} & \dots & X_{n1} \\ \vdots & & \vdots \\ X_{1n} & \dots & X_{nn} \end{pmatrix} \quad \text{respectively} \quad X^{\dagger} = \begin{pmatrix} X_{11}^{*} & \dots & X_{n1}^{*} \\ \vdots & & \vdots \\ X_{1n}^{*} & \dots & X_{nn}^{*} \end{pmatrix}.$$

Here, * denotes complex conjugation, i.e. if z = x + iy for $x, y \in \mathbb{R}$, then $z^* = x - iy$.

Furthermore, the operators $P_{\pm} : \mathbb{M}_n \to \mathbb{M}_n$ and $Q_{\pm} : \mathbb{M}_n \to \mathbb{M}_n$ are defined by

$$P_{\pm}(X) = \frac{1}{2} \left(X \pm X^{T} \right) \quad \text{respectively} \quad Q_{\pm}(X) = \frac{1}{2} \left(X \pm X^{\dagger} \right) \,.$$

- $(2\frac{1}{2})$ **c1.** Show that *matrix transposition*, $T: \mathbb{M}_n \to \mathbb{M}_n : X \mapsto T(X) \stackrel{\text{def}}{=} X^T$, is a linear operator.
- $(2\frac{1}{2})$ c2. Show that matrix conjugation, $C: \mathbb{M}_n \to \mathbb{M}_n : X \mapsto C(X) \stackrel{\text{def}}{=} X^{\dagger}$, is not a linear operator.
- $(2\frac{1}{2})$ c3. Show that $P_{\pm}: \mathbb{M}_n \to \mathbb{M}_n$ are linear operators.
- $(2\frac{1}{2})$ c4. Show that $Q_{\pm}: \mathbb{M}_n \to \mathbb{M}_n$ are not linear operators.

The null matrix in \mathbb{M}_n is indicated by Ω , i.e. $\Omega_{ij} = 0$ for all $i, j = 1, \ldots, n$. The identity matrix in \mathbb{M}_n is indicated by I, i.e. $I_{ij} = 1$ if $i = j = 1, \ldots, n$, otherwise $I_{ij} = 0$. The null operator $\mathbb{N} : \mathbb{M}_n \to \mathbb{M}_n$ is defined by $\mathbb{N}(X) = \Omega \in \mathbb{M}_n$ for all $X \in \mathbb{M}_n$. The identity operator id : $\mathbb{M}_n \to \mathbb{M}_n$ is defined by $\mathrm{id}(X) = X$ for all $X \in \mathbb{M}_n$. Operator composition (i.e. successive application of operators in right-to-left order) is indicated by the infix operator \circ .

- $(2\frac{1}{2})$ **d1.** Show that $P_+ + P_- = id$.
- $(2\frac{1}{2})$ **d2.** Show that $P_+ P_- = T$.
- $(2\frac{1}{2})$ **d3.** Show that $P_+ \circ P_- = P_- \circ P_+ = N$.
- $(2\frac{1}{2})$ **d4.** Show that $P_{\pm} \circ P_{\pm} = P_{\pm}$.

Consider the following binary operator: $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{K} : (X, Y) \mapsto \langle X | Y \rangle \stackrel{\text{def}}{=} \operatorname{trace}(X^{\mathrm{T}}Y).$ Here, trace : $\mathbb{M}_n \to \mathbb{K}$ is the (linear) *trace* operator, defined as summation of diagonal elements:

$$\operatorname{trace} X = \sum_{i=1}^{n} X_{ii}$$

- $(2\frac{1}{2})$ e1. Show that if $\mathbb{K} = \mathbb{R}$ then $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{R}$ defines a real inner product.
- $(2\frac{1}{2})$ e2. Show that if $\mathbb{K} = \mathbb{C}$ then $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{C}$ does not define a complex inner product.
- (2¹/₂) **f.** How would you modify the definition of $\langle | \rangle : \mathbb{M}_n \times \mathbb{M}_n \to \mathbb{C}$ in the complex case, $\mathbb{K} = \mathbb{C}$, such that it does define a complex inner product? You may state your definition without proof.

In the remainder of this problem we restrict ourselves to $\mathbb{K} = \mathbb{R}$. In particular, we consider the case of the real inner product, recall e1.

Operator transposition, $T: \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n) \to \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$, is implicitly defined by the identity

$$\langle A^{\mathrm{T}}(X)|Y\rangle \stackrel{\mathrm{der}}{=} \langle X|A(Y)\rangle$$
 for all $A \in \mathscr{L}(\mathbb{M}_n, \mathbb{M}_n)$ and $X, Y \in \mathbb{M}_n$.

 $(2\frac{1}{2})$ g. Show that $P_{\pm}^{T} = P_{\pm}$. (Together with d4 this shows that P_{\pm} are orthogonal projections.)

÷

 $(32\frac{1}{2})$ 2. Consider the Laplace equation for the function $u \in C^{\infty}(\mathbb{R}^2)$:

$$\Delta u = 0$$
 in which $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$

Our aim is to find a first order partial differential equation, such that its solutions also satisfy the Laplace equation. To this end we introduce a real linear space V, the dimension $n \ge 2$ of which is yet to be determined, and furnish it with an additional operator henceforth referred to as "multiplication". The product of $v, w \in V$ is then simply written as $vw \in V$. In this way V is turned into a so-called algebra, for which we stipulate the following algebraic axioms, viz. for all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$:

- (uv)w = u(vw),
- u(v+w) = uv + uw,
- (u+v)w = uw + vw,
- $\lambda(uv) = (\lambda u)v = u(\lambda v),$

(Multiplication takes precedence over vector addition unless parentheses indicate otherwise.)

We now attempt to decompose the Laplacian operator as follows:

$$\Delta = \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) \left(a\frac{\partial}{\partial x} + b\frac{\partial}{\partial y}\right) \,.$$

Here $a, b \in V$ are two fixed, independent elements (vectors). For consistency we assume that $u(x, y) \in V$ (instead of our original assumption $u(x, y) \in \mathbb{R}$).

a. Show that V is *not* commutative, and that it must possess an identity element $1 \in V$ that has to be formally identified with the scalar number $1 \in \mathbb{R}$, by showing that

- $(2\frac{1}{2})$ **a1.** ab + ba = 0,
- $(2\frac{1}{2})$ **a2.** $a^2 = b^2 = 1$.
- (5) **b.** Show that the (unordered) pair (a, b) satisfying the conditions of **a1** and **a2** is not unique. (*Hint:* Suppose $a' = a_1a + a_2b$, $b' = b_1a + b_2b$ for some $a_1, a_2, b_1, b_2 \in \mathbb{R}$.)

c. Suppose $v, w \in \text{span}\{a, b\} \subset V$ are such that, say, $v = v_1 a + v_2 b$ and $w = w_1 a + w_2 b$ for some $v_1, v_2, w_1, w_2 \in \mathbb{R}$. Compute

- $(2\frac{1}{2})$ c1. vw + wv,
- $(2\frac{1}{2})$ **c2.** v^2 .
- (2¹/₂) **d.** Show that dim V > 2. (*Hint:* Alternatively, show that span{a, b} $\subset V$ is not closed under multiplication.)

We add two more independent elements to the set $\{a, b\}$, viz. the unit element 1 and the element ab, and define $V = \text{span}\{1, a, b, ab\}$. Instead of $\lambda 1 + \mu a + \nu b + \rho ab \ (\lambda, \mu, \nu, \rho \in \mathbb{R})$ we write $\lambda + \mu a + \nu b + \rho ab$ for an arbitrary element of V.

(5) **e.** Show that V is closed under multiplication, i.e. show that if $v = v_0 + v_1a + v_2b + v_3ab \in V$, $w = w_0 + w_1a + w_2b + w_3ab \in V$, then also $vw \in V$.

We now try to realize elements of V in terms of real-valued 2×2 -matrices. To this end we hypothesize that

$$V \subset \mathbb{M}_2 = \left\{ \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \middle| a_{ij} \in \mathbb{R} \right\}.$$

- (5) **f.** Construct explicit matrices $A, B \in \mathbb{M}_2$ corresponding to $a, b \in V$ in the sense that
 - $AB + BA = \Omega$,
 - $A^2 = B^2 = I$.

Here $\Omega \in \mathbb{M}_2$ is the null matrix, corresponding to the null element $0 \in V$, and $I \in \mathbb{M}_2$ is the identity matrix, corresponding to the identity element $1 \in V$.

(*Hint:* As an ansatz, stipulate a diagonal matrix A, and show that B must then be anti-diagonal.)

- (2¹/₂) **g.** Given A and B as determined under **f**, what is the matrix form $v_0 + v_1A + v_2B + v_3AB \in \mathbb{M}_2$ corresponding to a general element $v_0 + v_1a + v_2b + v_3ab \in V$?
- $(2\frac{1}{2})$ h. Show that if $u: \mathbb{R}^2 \to V$ satisfies the first order partial differential equation

$$a\frac{\partial u}{\partial x} + b\frac{\partial u}{\partial y} = 0$$

then it is also a solution of $\Delta u = 0$.

- (5) 3. Consider a strictly monotonic, continuously differentiable function $f : \mathbb{R} \to \mathbb{R} : x \mapsto f(x)$, with f'(x) > 0 for all $x \in \mathbb{R}$, and $f(\pm \infty) = \pm \infty$. The inverse function theorem states that such a function has an inverse, $f^{-1} : \mathbb{R} \to \mathbb{R} : y \mapsto f^{-1}(y)$, such that $(f^{-1} \circ f)(x) = x$ for all $x \in \mathbb{R}$, and $(f \circ f^{-1})(y) = y$ for all $y \in \mathbb{R}$.
- $(2\frac{1}{2})$ a. Argue why the equation f(x) = 0 has precisely one solution for $x \in \mathbb{R}$ (x = a, say). (*Hint:* Sketch the graph of such a function f.)
- (2¹/₂) **b.** Show that $\delta(f(x)) = \frac{\delta(x-a)}{f'(a)}$, in which $a \in \mathbb{R}$ is the unique point for which f(a) = 0. (*Hint:* Evaluate the distribution corresponding to the Dirac function on the left hand side on an arbitrary test function $\phi \in \mathscr{S}(\mathbb{R})$, i.e. $\int_{-\infty}^{\infty} \delta(f(x)) \phi(x) dx$, and apply substitution of variables.)

÷

 $(27\frac{1}{2})4$. In this problem we consider a synthetic signal $f: \mathbb{R} \longrightarrow \mathbb{R}$, defined as follows:

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ \frac{1}{2} & \text{if } x = 0 \\ 1 & \text{if } x > 0 \end{cases}$$

Furthermore, we define the so-called Poisson filter $\phi_{\sigma}: \mathbb{R} \longrightarrow \mathbb{R}$ for $\sigma > 0$ as

$$\phi_{\sigma}(x) = \frac{1}{\pi} \frac{\sigma}{x^2 + \sigma^2} \,.$$

In this problem you may use the following standard formulas (cf. the graph shown below):

$$\int \frac{1}{1+x^2} dx = \arctan x + c \qquad \text{resp.} \qquad \lim_{x \to \pm \infty} \arctan x = \pm \frac{\pi}{2}.$$

Throughout this problem we employ the following Fourier convention:

$$\widehat{u}(\omega) = \mathcal{F}(u)(\omega) = \int_{-\infty}^{\infty} e^{-i\omega x} u(x) \, dx \quad \text{whence} \quad u(x) = \mathcal{F}^{-1}(\widehat{u})(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \, \widehat{u}(\omega) \, d\omega \, .$$

 $(2\frac{1}{2})$ a. Show that $\int_{-\infty}^{\infty} \phi_{\sigma}(x) dx = 1$ regardless of the value of σ .

 $(2\frac{1}{2})$ **b1.** Prove that for any, sufficiently smooth, integrable filter ϕ we have:

$$(f * \phi)(x) = \int_{-\infty}^{x} \phi(\xi) \, d\xi \, .$$

 $(2\frac{1}{2})$ **b2.** Show by explicit computation that the convolution product $f * \phi_{\sigma}$ is given by

$$(f * \phi_{\sigma})(x) = \frac{1}{2} + \frac{1}{\pi} \arctan \frac{x}{\sigma}.$$

(5) **c.** Show that the Fourier transform $\widehat{f} = \mathcal{F}(f)$ of f is given by

$$\widehat{f}(\omega) = \frac{1}{i\omega} \,.$$

(*Hint:* From part **b1** it follows that $\frac{d}{dx}(f * \phi)(x) = \phi(x)$. Subject this to Fourier transformation.)

d. Without proof we state the Fourier transform $\hat{\phi}_{\sigma} = \mathcal{F}(\phi_{\sigma})$ of ϕ_{σ} :

$$\widehat{\phi}_{\sigma}(\omega) = e^{-\sigma|\omega|}$$

- (2¹/₂) **d1.** Explain the behaviour of $\hat{\phi}_{\sigma}(\omega)$ for $\omega \to 0$ in terms of properties of the corresponding spatial filter $\phi_{\sigma}(x)$. (*Hint:* Cf. problem **a**.)
- (2¹/₂) **d2.** Explain the behaviour of $\hat{f}(\omega)$ for $\omega \to 0$ in terms of properties of the corresponding spatial signal f(x).
- (5) **e.** Determine the function $\mathcal{F}(f * \phi_{\sigma})$.
- $(2\frac{1}{2})$ **f.** Show that $\lim_{\sigma \to 0} f * \phi_{\sigma} = f$. Hint: Take the "Fourier route".
- (2¹/₂) **g.** Prove the claim under **d**: $\hat{\phi}_{\sigma}(\omega) = e^{-\sigma|\omega|}$. (*Hint:* Apply the inverse Fourier transform.)

THE END