EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday January 23, 2012. Time: 09h00-12h00. Place: AUD 14.

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or any other equipment, is not allowed.
- You may provide your answers in Dutch or English.
- Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Group Theory

In this problem we consider sets of real-valued 2×2-matrices generated by the following matrix:

$$
A \stackrel{\text { def }}{=}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Nonnegative integer matrix powers are defined as repetitive matrix products:

$$
X^{k} \stackrel{\text { def }}{=} \underbrace{X \ldots X}_{k \text { factors }} \quad\left(k \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right) .
$$

By convention the empty product yields the 2×2 identity matrix, $X^{0} \stackrel{\text { def }}{=} I$. Consider the set

$$
L \stackrel{\text { def }}{=}\left\{A^{k} \mid k \in \mathbb{N}_{0}\right\}
$$

L is furnished with an internal operator of type $L \times L \rightarrow L$, viz. standard matrix multiplication.
a1. Show that L is closed under matrix multiplication.

Let $a, b \in L$. By definition there exist $k, \ell \in \mathbb{N}_{0}$ such that $a=A^{k}, b=A^{\ell}$, hence $a b=A^{k} A^{\ell}=A^{k+\ell} \in L$, since $k+\ell \in \mathbb{N}_{0}$.

$$
\left(2 \frac{1}{2}\right)
$$

a2. Show that L contains exactly 4 distinct elements, and compute their matrix representations.

By either definition or straightforward computation we find $A^{0}=I, A^{1}=A, A^{2}=-I, A^{3}=-A$. Consequently, $A^{4}=I=A^{0}$, and, more generally, $A^{4+k}=A^{k}$ for all $k \in \mathbb{N}_{0}$. This 4-periodicity property implies that the only distinct elements of L are those A^{k} given by $k=0,1,2,3$.
a3. Prove that L is a commutative group by providing its 4×4 group multiplication table.

From the fact that $A^{k} A^{\ell}=A^{(k+\ell)} \bmod 4$ the multiplication table is evident:

	A^{0}	A^{1}	A^{2}	A^{3}
A^{0}	A^{0}	A^{1}	A^{2}	A^{3}
A^{1}	A^{1}	A^{2}	A^{3}	A^{0}
A^{2}	A^{3}	A^{0}	A^{1}	A^{2}
A^{3}	A^{0}	A^{1}	A^{2}	A^{3}

Explicit formulas for the matrix powers in the table are given in a2.
We furthermore define the linear space $\mathscr{L} \stackrel{\text { def }}{=} \operatorname{span} L$.
a4. Show that $\operatorname{dim} \mathscr{L}=2$, in other words, that there are two linearly independent elements $X_{1}, X_{2} \in \mathscr{L}$ such that every element $X \in \mathscr{L}$ can be written as a linear combination of the form $X=\lambda_{1} X_{1}+\lambda_{2} X_{2}$ for some $\lambda_{1}, \lambda_{2} \in \mathbb{R}$.

Let $X=\sum_{k=0}^{3} \lambda_{k} A^{k} \in \mathscr{L}$. With the explicit forms for A^{k} computed in a2 we observe that $X=\left(\lambda_{0}-\lambda_{2}\right) I+\left(\lambda_{1}-\lambda_{3}\right) A$, so $\mathscr{L}=\operatorname{span}\{I, A\}$, and since I and A are linearly independent we conclude that $\{I, A\}$ is a basis of \mathscr{L}, i.e. $\operatorname{dim} \mathscr{L}=2$.

The exponential function can be applied to square matrices via its formal Taylor series:

$$
\exp X \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} \frac{1}{k!} X^{k}=I+X+\frac{1}{2} X^{2}+\frac{1}{6} X^{3}+\frac{1}{24} X^{4}+\ldots
$$

Based on this we define the set $\mathscr{R}=\{\exp (\theta A) \mid \theta \in \mathbb{R}\}$, and furnish it with standard matrix multiplication. Without proof we state that

$$
\exp X \exp Y=\exp (X+Y) \quad \text { if }[X, Y] \stackrel{\text { def }}{=} X Y-Y X=0
$$

b. Show that \mathscr{R} is a commutative group by proving the following properties.
(2) b1. \mathscr{R} is closed, i.e. $\exp (\eta A) \exp (\theta A) \in \mathscr{R}$. Specify this element for given $\eta, \theta \in \mathbb{R}$.

Since $[\eta A, \theta A]=\eta \theta[A, A]=0$ we may apply the given multiplication formula (see $*$ below). For $\exp (\eta A), \exp (\theta A) \in \mathscr{R}$ we have $\exp (\eta A) \exp (\theta A) \stackrel{*}{=} \exp ((\eta+\theta) A) \in \mathscr{R}$.
b2. \mathscr{R} is associative.

For all $\alpha, \beta, \gamma \in \mathbb{R}$ we have

$$
(\exp (\alpha A) \exp (\beta A)) \exp (\gamma A)=(\exp ((\alpha+\beta) A)) \exp (\gamma A)=\exp (((\alpha+\beta)+\gamma) A)
$$

which clearly equals, by associativity of ordinary number multiplication,

$$
\exp (\alpha+(\beta+\gamma) A)=\exp (\alpha A)(\exp ((\beta+\gamma) A))=\exp (\alpha A)(\exp (\beta A) \exp (\gamma A))
$$

(2) b3. \mathscr{R} has a unit element. Specify this element.

The unit element is $I=\exp (0 A) \in \mathscr{R}$.
(2) b4. Every element of \mathscr{R} has an inverse. Specify the inverse of $\exp (\theta A)$ for given $\theta \in \mathbb{R}$.

The inverse of $\exp (\theta A) \in \mathscr{R}$ is $\exp (-\theta A) \in \mathscr{R}$, since $\exp (\theta A) \exp (-\theta A)=\exp ((\theta-\theta) A)=\exp (0 A)=I$.
b5. \mathscr{R} is commutative.

This follows from commutativity of ordinary number addition: $\exp (\eta A) \exp (\theta A)=\exp ((\eta+\theta) A)=\exp ((\theta+\eta) A)=$ $\exp (\theta A) \exp (\eta A)$ for all $\eta, \theta \in \mathbb{R}$.
c. Show that \mathscr{R} is actually the group of 2×2 rotation matrices, i.e.

$$
\mathscr{R}=\left\{\left.R(\theta) \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\cos \theta & -\sin \theta \tag{10}\\
\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, \theta \in \mathbb{R}\right\} .
$$

Hint: Recall the Taylor expansions of $\cos \theta$ and $\sin \theta$.

From a2 it follows that $A^{2 k}=(-1)^{k} I$ and $A^{2 k+1}=(-1)^{k} A$ for all $k \in \mathbb{N}_{0}$, therefore split the following sum (in step $*$) as follows:

$$
\exp (\theta A) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} \frac{1}{k!}(\theta A)^{k}=\sum_{k=0}^{\infty} \frac{\theta^{k}}{k!} A^{k} \stackrel{*}{=} \sum_{k=0}^{\infty} \frac{\theta^{2 k}}{(2 k)!} A^{2 k}+\sum_{k=0}^{\infty} \frac{\theta^{2 k+1}}{(2 k+1)!} A^{2 k+1} \stackrel{\mathrm{a} 2}{=} \sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k}}{(2 k)!} I+\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!} A
$$

Here we recognize the trigonometric Taylor expansions:

$$
\cos \theta=\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k}}{(2 k)!} \quad \text { and } \quad \sin \theta=\sum_{k=0}^{\infty} \frac{(-1)^{k} \theta^{2 k+1}}{(2 k+1)!},
$$

so that apparently

$$
\exp (\theta A)=\cos \theta I+\sin \theta A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) .
$$

(25)

2. Vector Space

We consider the class V of positive definite functions $f: \mathbb{R} \rightarrow \mathbb{R}^{+}: x \mapsto f(x)>0$ for all $x \in \mathbb{R}$. We endow V with a binary infix operator

$$
\oplus: V \times V \rightarrow V:(f, g) \mapsto f \oplus g \quad \text { defined such that }(f \oplus g)(x) \stackrel{\text { def }}{=} f(x) g(x) \text { for all } x \in \mathbb{R}
$$

We also provide a scalar multiplication operator

$$
\otimes: \mathbb{R} \times V \rightarrow V:(\lambda, f) \mapsto \lambda \otimes f \quad \text { defined such that }(\lambda \otimes f)(x) \stackrel{\text { def }}{=} f(x)^{\lambda} \text { for all } x \in \mathbb{R} .
$$

Show that V constitutes a vector space, and provide explicit formulas for the neutral element $0 \in V$ as well as for the inverse element $(-f) \in V$ for any $f \in V$. Start by proving the closure properties implied by the above notation, and proceed by verifying all vector space axioms. It is mandatory to adhere to the symbols \oplus and \otimes in your notation wherever appropriate.

- Caveat: $0(x) \neq 0,(-f)(x) \neq-f(x)$. No confusion will arise if you use \oplus / \otimes consistently.

Closure: If $f, g \in V, \lambda, \mu \in \mathbb{R}$, then, with henceforth \otimes taking precedence over $\oplus,(\lambda \otimes f \oplus \mu \otimes g)(x) \stackrel{\text { def }}{=} f(x)^{\lambda} g(x)^{\mu}>0$ for all $x \in \mathbb{R}$, whence $\lambda \otimes f \oplus \mu \otimes g \in V$. Furthermore, let $f, g, h \in V, \lambda, \mu, \nu \in \mathbb{R}$ be given in all that follows, and $x \in \mathbb{R}$ arbitrary. We have

- $((f \oplus g) \oplus h)(x) \stackrel{\text { def }}{=}(f \oplus g)(x) h(x) \stackrel{\text { def }}{=}(f(x) g(x)) h(x)=f(x)(g(x) h(x)) \stackrel{\text { def }}{=} f(x)(g \oplus h)(x) \stackrel{\text { def }}{=}(f \oplus(g \oplus h))(x)$, i.e. $(f \oplus g) \oplus h=f \oplus(g \oplus h)$.
- Let $0 \in V$ be the function given by $0(x) \stackrel{\text { def }}{=} 1>0$, then $(0 \oplus f)(x) \stackrel{\text { def }}{=} 0(x) f(x)=1 f(x)=f(x)$, i.e. $0 \oplus f=f$.
- Let $(-f) \in V$ be the function given by $(-f)(x) \stackrel{\text { def }}{=} f(x)^{-1}>0$, or $(-f) \stackrel{\text { def }}{=}(-1) \otimes f$, then $((-f) \oplus f)(x) \stackrel{\text { def }}{=}$ $(-f)(x) f(x) \stackrel{\text { def }}{=} f(x)^{-1} f(x)=1 \stackrel{\text { def }}{=} 0(x)$.
- $(f \oplus g)(x) \stackrel{\text { def }}{=} f(x) g(x)=g(x) f(x) \stackrel{\text { def }}{=}(g \oplus f)(x)$, i.e. $f \oplus g=g \oplus f$.
- $(\lambda \otimes(f \oplus g))(x) \stackrel{\text { def }}{=}(f \oplus g)(x)^{\lambda} \stackrel{\text { def }}{=}(f(x) g(x))^{\lambda}=f(x)^{\lambda} g(x)^{\lambda} \stackrel{\text { def }}{=}(\lambda \otimes f)(x)(\lambda \otimes g)(x) \stackrel{\text { def }}{=}(\lambda \otimes f \oplus \lambda \otimes g)(x)$, i.e. $\lambda \otimes(f \oplus g)=\lambda \otimes f \oplus \lambda \otimes g$.
- $((\lambda+\mu) \otimes f)(x) \stackrel{\text { def }}{=} f(x)^{\lambda+\mu}=f(x)^{\lambda} f(x)^{\mu} \stackrel{\text { def }}{=}(\lambda \otimes f)(x)(\mu \otimes f)(x) \stackrel{\text { def }}{=}(\lambda \otimes f \oplus \mu \otimes f)(x)$, i.e. $(\lambda+\mu) \otimes f=\lambda \otimes f \oplus \mu \otimes f$.
- $((\lambda \mu) \otimes f)(x) \stackrel{\text { def }}{=} f(x)^{\lambda \mu}=\left(f(x)^{\mu}\right)^{\lambda} \stackrel{\text { def }}{=}(\mu \otimes f)(x)^{\lambda} \stackrel{\text { def }}{=}(\lambda \otimes(\mu \otimes f))(x)$, i.e. $(\lambda \mu) \otimes f=\lambda \otimes(\mu \otimes f)$.
- $(1 \otimes f)(x) \stackrel{\text { def }}{=} f(x)^{1}=f(x)$, i.e. $1 \otimes f=f$.

(15) 3. Distribution Theory

In this problem we insist on a notational distinction between the Dirac point distribution and its formal integral representation involving a corresponding "Dirac function". We shall write

$$
T_{\delta}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto T_{\delta}(\phi) \stackrel{\text { def }}{=} \phi(0)
$$

for the distribution proper, respectively

$$
\delta: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto \delta(x)
$$

for the virtual function "under the integral", so $T_{\delta}(\phi) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} \delta(x) \phi(x) d x$.
The goal of this problem will be to prove that $\delta \notin L^{p}(\mathbb{R})$ for any $p>1$, including $p=\infty$.

One can show that there exist so-called "bump functions" $\psi \in \mathscr{S}(\mathbb{R})$ such that $\psi(x)=0$ outside an arbitrarily chosen support interval. In particular we consider the subfamily $\mathscr{B}_{\epsilon}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$ of bump functions defined for given $\epsilon>0$ as follows:

$$
\begin{equation*}
\mathscr{B}_{\epsilon}(\mathbb{R})=\left\{\psi \in \mathscr{S}(\mathbb{R}) \mid \psi(x)=0 \text { outside the interval }\left(-\frac{\epsilon}{2}, \frac{\epsilon}{2}\right), \text { and } \max _{x \in \mathbb{R}}|\psi(x)|=\psi(0)=1\right\} \tag{5}
\end{equation*}
$$

a. Show that $\mathscr{B}_{\epsilon}(\mathbb{R}) \subset L^{q}(\mathbb{R})$ for any $q \geq 1, \epsilon>0$, by proving that $\|\psi\|_{q} \leq \sqrt[q]{\epsilon}$ for $\psi \in \mathscr{B}_{\epsilon}(\mathbb{R})$.
$\|\psi\|_{q}^{q}=\int_{-\epsilon / 2}^{\epsilon / 2}|\psi(x)|^{q} d x \leq \epsilon \max |\psi(x)|^{q}=\epsilon$.
(10) b. Use this fact to disprove the hypothesis that $\delta \in L^{p}(\mathbb{R})$ for some $p>1$ or $p=\infty$.

Hint: Consider the hypothesis and subproblem a in the context of Hölder's inequality.

For fixed $p>1$ or $p=\infty$ take $q \geq 1$ such that it satisfies Hölder's condition $(1 / p+1 / q=1)$, then $1=\psi(0)=\int_{-\infty}^{\infty} \delta(x) \psi(x) d x \leq$ $\|\delta\|_{p}\|\psi\|_{q} \leq \sqrt[q]{\epsilon}\|\delta\|_{p}$. This is a contradiction, since the r.h.s. can be made arbitrarily small. (Note that this argument fails for $p=1$, i.e. $q=\infty$.)

4. Fourier Transformation (Exam March 21, 2007, Problem 3)

In this problem we use the following Fourier convention for $f \in \mathscr{S}^{\prime}(\mathbb{R})$:

$$
\widehat{f}(\omega) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x .
$$

As a result we have for the inverse:

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \omega x} d \omega
$$

Here we permit ourselves the sloppiness of identifying a regular tempered distribution f with its Riesz representant ("function under the integral") with function definition $f(x)$. The Dirac δ-distribution is identified with the "Dirac delta function" with function definition $\delta(x)$.
a. Given $\widehat{f}(\omega)=\delta(\omega-a)$ for some constant $a \in \mathbb{R}$. Determine $f(x)$.

Substitution into the definition of the inverse Fourier transform yields

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \omega x} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \delta(\omega-a) e^{i \omega x} d \omega \stackrel{*}{=} \frac{e^{i a x}}{2 \pi} .
$$

The last step $*$ exploits the definition of the Dirac delta function.
b. Given $g(x)=2 \cos ^{2} x$. (With $\cos ^{2} x$ we mean $(\cos x)^{2}$.) Determine $\widehat{g}(\omega)$.

Hint: You can check your result with the help of subproblem a.
Note that $g(x)=2 \cos ^{2} x=\cos (2 x)+1$. Therefore

$$
\widehat{g}(\omega)=\int_{-\infty}^{\infty} g(x) e^{-i \omega x} d x=\int_{-\infty}^{\infty}(\cos (2 x)+1) e^{-i \omega x} d x .
$$

Since

$$
\cos (2 x)=\frac{e^{2 i x}+e^{-2 i x}}{2}
$$

we have

$$
\begin{aligned}
\widehat{g}(\omega) & =\int_{-\infty}^{\infty}\left(\frac{1}{2} e^{-i(\omega-2) x}+\frac{1}{2} e^{-i(\omega+2) x}+e^{-i \omega x}\right) d x=\frac{1}{2} \int_{-\infty}^{\infty} e^{-i(\omega-2) x} d x+\frac{1}{2} \int_{-\infty}^{\infty} e^{-i(\omega+2) x} d x+\int_{-\infty}^{\infty} e^{-i \omega x} d x \\
& =\pi \delta(\omega-2)+\pi \delta(\omega+2)+2 \pi \delta(\omega) .
\end{aligned}
$$

Check, via a:

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{g}(\omega) e^{i \omega x} d \omega & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}(\pi \delta(\omega-2)+\pi \delta(\omega+2)+2 \pi \delta(\omega)) e^{i \omega x} d \omega \\
& =\frac{1}{2} \int_{-\infty}^{\infty} \delta(\omega-2) e^{i \omega x} d \omega+\frac{1}{2} \int_{-\infty}^{\infty} \delta(\omega+2) e^{i \omega x} d \omega+\int_{-\infty}^{\infty} \delta(\omega) e^{i \omega x} d \omega \\
& =\frac{1}{2} e^{2 i x}+\frac{1}{2} e^{-2 i x}+1=\cos (2 x)+1=g(x)
\end{aligned}
$$

In the following part you may use the standard integral

$$
\int_{-\infty}^{\infty} e^{-(x+i y)^{2}} d x=\sqrt{\pi} \quad \text { regardless of the value of } y \in \mathbb{R} .
$$

(71 $\left.\frac{1}{2}\right)$
c. Given $\phi(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}}$. Determine $\widehat{\phi}(\omega)$.

$$
\widehat{\phi}(\omega)=\int_{-\infty}^{\infty} \phi(x) e^{-i \omega x} d x=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2}-i \omega x} d x=e^{-\frac{1}{4} \omega^{2}} \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\left(x+\frac{1}{2} i \omega\right)^{2}} d x \stackrel{*}{=} e^{-\frac{1}{4} \omega^{2}} .
$$

In the last step * we have used the given standard integral.
($7 \frac{1}{2}$) d. Given $h(x)=\frac{2}{\sqrt{\pi}} \cos ^{2} x e^{-x^{2}}$. Determine $\widehat{h}(\omega)$.
Hint: Note that $h=g \phi$, Recall subproblems B and c.
With the help of the hint we determine

$$
\begin{aligned}
\widehat{h}(\omega) & =\widehat{(g \phi)}(\omega) \stackrel{*}{=} \frac{1}{2 \pi}(\widehat{g} * \widehat{\phi})(\omega)=\int_{-\infty}^{\infty} \widehat{g}\left(\omega^{\prime}\right) \widehat{\phi}\left(\omega-\omega^{\prime}\right) d \omega^{\prime} \\
& \stackrel{\mathrm{b}}{=} \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\pi \delta\left(\omega^{\prime}-2\right)+\pi \delta\left(\omega^{\prime}+2\right)+2 \pi \delta\left(\omega^{\prime}\right)\right) \widehat{\phi}\left(\omega-\omega^{\prime}\right) d \omega^{\prime} \\
& \stackrel{\star}{=} \frac{1}{2} \widehat{\phi}(\omega-2)+\frac{1}{2} \widehat{\phi}(\omega+2)+\widehat{\phi}(\omega) \stackrel{\mathrm{c}}{=} \frac{1}{2} e^{-\frac{1}{4}(\omega-2)^{2}}+\frac{1}{2} e^{-\frac{1}{4}(\omega+2)^{2}}+e^{-\frac{1}{4} \omega^{2}} .
\end{aligned}
$$

In $*$ the theorem for the Fourier transform of a product of two functions has been used. In \star we have used the definition of the Dirac delta function.

THE END

