EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Friday January 25, 2013. Time: 14h00-17h00. Place: MF lecture room 07

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 3 problems. Maximum credits are indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment, including the problem companion ("opgaven- en tentamenbundel"), is not allowed.
- You may provide your answers in Dutch or English.
- Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Group Theory

In this problem we consider the set of 2-parameter transformations on $\mathbb{L}_{2}(\mathbb{R})$ defined by

$$
G=\left\{T_{a, b}: \mathbb{L}_{2}(\mathbb{R}) \rightarrow \mathbb{L}_{2}(\mathbb{R}): f \mapsto T_{a, b}(f) \mid T_{a, b}(f)(x)=b f(x+a), a \in \mathbb{R}, b \in \mathbb{R}^{+}\right\}
$$

By $T_{a, b}(f)(x)$ we mean $\left(T_{a, b}(f)\right)(x)$. We furnish the set G with the usual composition operator, indicated by the infix symbol \circ :

$$
\circ: G \times G \rightarrow G:\left(T_{a, b}, T_{c, d}\right) \mapsto T_{a, b} \circ T_{c, d},
$$

i.e. $\left(T_{a, b} \circ T_{c, d}\right)(f)=T_{a, b}\left(T_{c, d}(f)\right)$.
a. Show that this is a good definition by proving the following claims for $a, c \in \mathbb{R}, b, d \in \mathbb{R}^{+}$:
(5) a1. If $f \in \mathbb{L}_{2}(\mathbb{R})$, then $T_{a, b}(f) \in \mathbb{L}_{2}(\mathbb{R})$. (Closure of $\mathbb{L}_{2}(\mathbb{R})$ under the mapping $T_{a, b}$.)
(5) a2. If $T_{a, b} \in G$, then $T_{a, b} \circ T_{c, d}=T_{a+c, b d}$. (Closure of G under composition o.)
(10) b. Show that $\{G, \circ\}$ constitutes a commutative group, and give explicit expressions for the identity element $e \in G$, and for the inverse element $T_{a, b}^{\mathrm{inv}} \in G$ corresponding to $T_{a, b} \in G$.
(10) c. Show that $G_{1}=\left\{T_{a, b} \in G \mid a \in \mathbb{R}, b=1\right\}$ is a subgroup of G.

Hint: Exploit the fact that G is a group and $G_{1} \subset G$.

2. Distribution Theory

Recall the Dirac point distribution,

$$
\delta: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto \delta(\phi)=\phi(0)
$$

and its derivative,

$$
\delta^{\prime}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto \delta^{\prime}(\phi)=-\phi^{\prime}(0)
$$

In this problem we consider an approximation of δ^{\prime} in the form of a 1-parameter family of functions, given by

$$
f_{\epsilon}: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f_{\epsilon}(x)= \begin{cases}0 & \text { if } x \leq-\epsilon \\ 1 / \epsilon^{2} & \text { if }-\epsilon<x<0 \\ 0 & \text { if } x=0 \\ -1 / \epsilon^{2} & \text { if } 0<x<\epsilon \\ 0 & \text { if } x \geq \epsilon\end{cases}
$$

with $\epsilon>0$.
a. Draw the graph of $y=f_{\epsilon}(x)$, indicating relevant values (in terms of ϵ) on each axis.

Consider the regular tempered distribution $T_{f_{\epsilon}}$ associated with the function f_{ϵ}, i.e.

$$
T_{f_{\epsilon}}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto T_{f_{\epsilon}}(\phi) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f_{\epsilon}(x) \phi(x) d x
$$

(10) b. Show that $T_{f_{\epsilon}}(\phi)=\frac{1}{\epsilon^{2}} \int_{-\epsilon}^{0} \phi(x) d x-\frac{1}{\epsilon^{2}} \int_{0}^{\epsilon} \phi(x) d x$.

Let $\phi \in \mathscr{S}(\mathbb{R})$ be an analytical test function, and recall Taylor's theorem:

$$
\phi(x)=\phi(0)+\phi^{\prime}(0) x+\frac{1}{2} \phi^{\prime \prime}(\xi) x^{2}
$$

in which ξ is some number between 0 and x.
c. Using this Taylor expansion, argue (mathematically) why we may replace the Lagrange remainder term $\frac{1}{2} \phi^{\prime \prime}(\xi) x^{2}$ in the expression for $T_{f_{\epsilon}}(\phi)$ by a term of order $\mathcal{O}\left(\epsilon^{2}\right)$ as $\epsilon \downarrow 0$.
d. Show that, for any analytical test function $\phi \in \mathscr{S}(\mathbb{R}), \lim _{\epsilon \downarrow 0} T_{f_{\epsilon}}(\phi)=\delta^{\prime}(\phi)$.

(40) 3. Fourier Transformation (Exam January 17, 2007, Problem 3)

In this problem we employ the following Fourier convention:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \quad \text { with, consequently, } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \omega x} d \omega
$$

We also define the following complex valued one-dimensional signal $f_{a, b}: \mathbb{R} \rightarrow \mathbb{C}: x \mapsto f(x)$, as follows:

$$
f_{a, b}(x)=e^{(a+b i)|x|} .
$$

In this expression, $a, b \in \mathbb{R}$ are constant parameters and $|x|$ denotes the absolute value of $x \in \mathbb{R}$.
(10) a. Determine $\widehat{f}_{a, b}(\omega)$ and state the necessary conditions that $a, b \in \mathbb{R}$ have to fulfill in order for this function to be well-defined (in a classical, i.e. non-distributional sense).

The convolution of two functions $f, g: \mathbb{R} \rightarrow \mathbb{C}$ is given by

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

b. Prove that convolution is associative, i.e. that for all $f, g, h: \mathbb{R} \rightarrow \mathbb{C}$ for which the expressions below are well-defined we have
(5) b1. $f *(g * h)=(f * g) * h$, and
(5) b2. $f * g=g * f$.

By the symbol $*^{n}$ we denote n-fold convolution, i.e.

$$
f *^{n} f \stackrel{\text { def }}{=} f * \ldots * f \quad \text { with } n+1 \text { factors } f .
$$

(10) c. Determine the explicit form of the function $\widehat{f}_{a, b} *^{n} \widehat{f}_{a, b}$ for those $a, b \in \mathbb{R}$ for which $\widehat{f}_{a, b}$ is well-defined (recall part a).
d. Let $g(x)=x e^{-|x|}$. Find $\widehat{g}(\omega)$.

THE END

