EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday August 25, 2010. Time: 14h00-17h00. Place:

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is *not* allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

(25) 1. NORMS AND INNER PRODUCTS

The figure below shows a (real-valued) greyvalue image f consisting of 9 pixels, of which the numerical values are indicated.

2	0	0
4	-6	3
0	4	0

a. We define the *p*-norm of an $M \times N$ image *g* as

$$||g||_p = \left(\sum_{i=1}^{M} \sum_{j=1}^{N} |g[i,j]|^p\right)^{\frac{1}{p}}$$

for $p \ge 1$. Compute the following norms for the above 3×3 -image f:

- $(2\frac{1}{2})$ **a1.** $||f||_1$.
- $(2\frac{1}{2})$ **a2.** $||f||_2$.

b. We define furthermore the " ∞ -norm" of an $M \times N$ image g as $\|g\|_{\infty} = \lim_{p \to \infty} \|g\|_p$.

(2¹/₂) **b1.** Argue that $||g||_{\infty} = \max_{i=1,...,M,j=1,...,N} |g[i,j||.$ (*Hint:* Consider the asymptotic behaviour of $(m^p + M^p)^{\frac{1}{p}} = M((\frac{m}{M})^p + 1)^{\frac{1}{p}}$ for $0 \le m \le M$ as $p \to \infty$.) $(2\frac{1}{2})$ **b2.** Compute $||f||_{\infty}$ for the given 3×3 -image f.

We define for an arbitrary $M \times N$ image g the normalized image

$$g_p = \frac{g}{\|g\|_p} \,.$$

c. Determine for the given 3×3 image f respectively (you may use the *appendix*)

- $(2\frac{1}{2})$ **c1.** f_1 ,
- $(2\frac{1}{2})$ **c2.** f_2 ,
- $(2\frac{1}{2})$ **c3.** f_{∞} .

For arbitrary $M \times N$ images g and h we introduce the (real) standard inner product, as follows:

$$\langle g | h \rangle = \sum_{i=1}^{M} \sum_{j=1}^{N} g[i,j] \, h[i,j] \, . \label{eq:glassical_states}$$

(2¹/₂) **d.** Prove that $\langle g_p | h_q \rangle = \frac{\langle g | h \rangle}{\|g\|_p \|h\|_q}$.

In the case of discrete $M \times N$ images g en h Hölder's inequality reads as follows:

$$\|gh\|_1 \le \|g\|_p \|h\|_q$$
,
for each parameter pair (p,q) for which $1 \le p,q \le \infty$ and $\frac{1}{p} + \frac{1}{q} = 1$.

(5) **e.** Prove that for arbitrary $M \times N$ images g and h we have $\langle g_p | h_q \rangle \leq 1$. In this inequality the pair (p,q) satisfies the conditions of Hölder's inequality.

÷

(35) 2. LINEAR SPACES AND PROJECTIONS

 $C_0^2([0,1])$ is the class of twice continuously differentiable, real functions of the type $f:[0,1] \to \mathbb{R}$, for which f(0) = f(1) = f'(0) = f'(1) = 0. (P.S. With f'(0) en f'(1) we mean right, respectively left derivative at the corresponding point.) Without proof we conjecture that $C^{\infty}([0,1])$, the class of real-valued functions on the closed interval [0,1] that are infinitely differentiable, constitutes a linear space. (P.S. Again the boundary derivatives $f^{(n)}(0)$ and $f^{(n)}(1)$ are defined in terms of single-sided limits.)

 $\begin{array}{ll} (7\frac{1}{2}) & \mbox{a. Prove that } C_0^2([0,1]) \mbox{ is a linear space.} \\ (\textit{Hint: } C_0^2([0,1]) \subset C^\infty([0,1]).) \end{array}$

We endow the linear space $C_0^2([0,1])$ with a real inner product according to one of the definitions below. The subscript identifies the definition, therefore do not omit it in your notation.

Definition 1: For $f, g \in C_0^2([0, 1])$,

$$\langle f|g\rangle_1 = \int_0^1 f(x) g(x) dx + \int_0^1 f'(x) g'(x) dx$$

Definition 2: For $f, g \in C_0^2([0, 1])$,

$$\langle f|g\rangle_2 = \int_0^1 f(x) g(x) \, dx - \frac{1}{2} \int_0^1 f''(x) g(x) \, dx - \frac{1}{2} \int_0^1 f(x) g''(x) \, dx \, .$$

- (5) **b.** Show that Definition 1 is a good definition, i.e. that it indeed defines an inner product.
- (5) **c.** Prove that both definitions are equivalent. (*Hint:* Partial integration.)

By virtue of equivalence you may omit the subscript henceforth: $\langle f|g \rangle = \langle f|g \rangle_1 = \langle f|g \rangle_2$. With the help of this inner product we introduce, for arbitrary fixed $h \in C_0^2([0,1])$, the following linear mapping $P_h : C_0^2([0,1]) \to C_0^2([0,1])$:

Definition:
$$P_h(f) = \frac{\langle h|f\rangle}{\langle h|h\rangle} h$$

- (5) **d.** Show that $P_h \circ P_h = P_h$. The infix operator \circ denotes composition.
- (5) **e.** Show that $P_h^{\dagger} = P_h$, i.e. $\langle g | P_h f \rangle = \langle P_h g | f \rangle$ for all $f, g \in C_0^2([0, 1])$.

Consider the following two functions (notice that f(x) = f(1-x) and g(x) = g(1-x)):

$$f(x) = x^4 - 2x^3 + x^2 \quad (0 \le x \le 1) \quad \text{and} \quad g(x) = \begin{cases} -4x^3 + 3x^2 & (0 \le x \le \frac{1}{2}) \\ -4(1-x)^3 + 3(1-x)^2 & (\frac{1}{2} \le x \le 1) \end{cases}$$

 $(7\frac{1}{2})$ **f.** Show that $f, g \in C_0^2([0, 1])$.

÷

(20) 3. Partial Differential Equations and Fourier Transformation

Consider the following partial differential equation (p.d.e.):

$$\frac{\partial^2 u}{\partial t^2} + \frac{\partial^2 u}{\partial x^2} = 0 \qquad x \in \mathbb{R}, \, t > 0 \, .$$

Here $u: \mathbb{R} \times \mathbb{R}^+ \longrightarrow \mathbb{R}: (x, t) \mapsto u(x, t)$ is a real valued spatial filter for each constant value of the parameter $t \in \mathbb{R}^+$.

(5) **a.** Consider, for fixed t, the Fourier decomposition

$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{u}(\omega,t) e^{i\omega x} d\omega \quad \text{and thus} \quad \widehat{u}(\omega,t) = \int_{-\infty}^{\infty} u(x,t) e^{-i\omega x} dx.$$

Show that with this definition the above p.d.e. for u(x,t) can be reduced to the following ordinary differential equation for $\hat{u}(\omega,t)$, in which $\omega \in \mathbb{R}$ can be interpreted as an arbitrary parameter:

$$\frac{d^2 \widehat{u}}{dt^2} - \omega^2 \, \widehat{u} = 0 \qquad \omega \in \mathbb{R}, \, t > 0 \, .$$

(5) **b.** Show that the general solution for $\hat{u}(\omega, t)$ is given by

$$\widehat{u}(\omega, t) = A e^{-t|\omega|} + B e^{t|\omega|}.$$

Here, A and B are two integration constants yet to be determined. (*Hint:* Stipulate a solution of type $\hat{u}(t) = e^{\lambda t}$ and determine the possible values of $\lambda \in \mathbb{C}$ in terms of ω .)

c. Determine the constants A en B based on the following assumptions:

$$(2\frac{1}{2})$$
 c1. $\lim_{t\to\infty} \hat{u}(\omega,t) = 0$ for all $\omega \neq 0$

(2¹/₂) **c2.** $\int_{-\infty}^{\infty} u(x,t) dx = 1$ for all t > 0. (*Hint:* What does this normalization mean for $\hat{u}(\omega, t)$?)

(5) **d.** Take (A, B) = (1, 0), so $\hat{u}(\omega, t) = e^{-t|\omega|}$. Determine u(x, t).

÷

(20) 4. DISTRIBUTION THEORY

We consider the function $f : \mathbb{R} \to \mathbb{R} : x \mapsto f(x)$ given by

$$f(x) = \begin{cases} 0 & x < 0\\ e^{-x} & x \ge 0 \end{cases}$$

and its associated regular tempered distribution $T_f: \mathscr{S}(\mathbb{R}) \to \mathbb{R}: \phi \mapsto T_f(\phi) = \int_{-\infty}^{\infty} f(x) \phi(x) \, dx.$

- (10) **a.** Show that f satisfies the o.d.e. (ordinary differential equation) u' + u = 0 almost everywhere, and explain what the annotation "almost everywhere" means in this case.
- (10) b. Show that, in distributional sense, T_f satisfies the o.d.e. u' + u = δ, in which the right hand side denotes the Dirac point distribution.
 (*Hint:* What does it mean for u' + u δ to be a distribution rather than a regular function?)

THE END