EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday August 25, 2010. Time: 14h00-17h00. Place:

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is not allowed.
- You may provide your answers in Dutch or English.

GOOD LUCK!

1. Norms and Inner Products

The figure below shows a (real-valued) greyvalue image f consisting of 9 pixels, of which the numerical values are indicated.

2	0	0
4	-6	3
0	4	0

a. We define the p-norm of an $M \times N$ image g as

$$
\|g\|_{p}=\left(\sum_{i=1}^{M} \sum_{j=1}^{N}|g[i, j]|^{p}\right)^{\frac{1}{p}}
$$

for $p \geq 1$. Compute the following norms for the above 3×3-image f :
a1. $\|f\|_{1}$.
$\left(2 \frac{1}{2}\right)$
a2. $\|f\|_{2}$.
b. We define furthermore the " ∞-norm" of an $M \times N$ image g as $\|g\|_{\infty}=\lim _{p \rightarrow \infty}\|g\|_{p}$.
b1. Argue that $\|g\|_{\infty}=\max _{i=1, \ldots, M, j=1, \ldots, N} \mid g[i, j \|$.
(Hint: Consider the asymptotic behaviour of $\left(m^{p}+M^{p}\right)^{\frac{1}{p}}=M\left(\left(\frac{m}{M}\right)^{p}+1\right)^{\frac{1}{p}}$ for $0 \leq m \leq M$ as $p \rightarrow \infty$.)
($2 \frac{1}{2}$)
b2. Compute $\|f\|_{\infty}$ for the given 3×3-image f.
We define for an arbitrary $M \times N$ image g the normalized image

$$
g_{p}=\frac{g}{\|g\|_{p}} .
$$

c. Determine for the given 3×3 image f respectively (you may use the appendix)
c1. f_{1},
($2 \frac{1}{2}$)
c2. f_{2},
($2 \frac{1}{2}$)
c3. f_{∞}.
For arbitrary $M \times N$ images g and h we introduce the (real) standard inner product, as follows:

$$
\langle g \mid h\rangle=\sum_{i=1}^{M} \sum_{j=1}^{N} g[i, j] h[i, j] .
$$

d. Prove that $\left\langle g_{p} \mid h_{q}\right\rangle=\frac{\langle g \mid h\rangle}{\|g\|_{p}\|h\|_{q}}$.

In the case of discrete $M \times N$ images g en h Hölder's inequality reads as follows:

$$
\|g h\|_{1} \leq\|g\|_{p}\|h\|_{q},
$$

for each parameter pair (p, q) for which $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$.
(5) e. Prove that for arbitrary $M \times N$ images g and h we have $\left\langle g_{p} \mid h_{q}\right\rangle \leq 1$. In this inequality the pair (p, q) satisfies the conditions of Hölder's inequality.

2. Linear Spaces and Projections

$C_{0}^{2}([0,1])$ is the class of twice continuously differentiable, real functions of the type $f:[0,1] \rightarrow \mathbb{R}$, for which $f(0)=f(1)=f^{\prime}(0)=f^{\prime}(1)=0$. (P.S. With $f^{\prime}(0)$ en $f^{\prime}(1)$ we mean right, respectively left derivative at the corresponding point.) Without proof we conjecture that $C^{\infty}([0,1])$, the class of real-valued functions on the closed interval $[0,1]$ that are infinitely differentiable, constitutes a linear space. (P.S. Again the boundary derivatives $f^{(n)}(0)$ and $f^{(n)}(1)$ are defined in terms of single-sided limits.)
($7 \frac{1}{2}$) a. Prove that $C_{0}^{2}([0,1])$ is a linear space.
(Hint: $\left.C_{0}^{2}([0,1]) \subset C^{\infty}([0,1]).\right)$

We endow the linear space $C_{0}^{2}([0,1])$ with a real inner product according to one of the definitions below. The subscript identifies the definition, therefore do not omit it in your notation.

Definition 1: For $f, g \in C_{0}^{2}([0,1])$,

$$
\langle f \mid g\rangle_{1}=\int_{0}^{1} f(x) g(x) d x+\int_{0}^{1} f^{\prime}(x) g^{\prime}(x) d x
$$

Definition 2: For $f, g \in C_{0}^{2}([0,1])$,

$$
\langle f \mid g\rangle_{2}=\int_{0}^{1} f(x) g(x) d x-\frac{1}{2} \int_{0}^{1} f^{\prime \prime}(x) g(x) d x-\frac{1}{2} \int_{0}^{1} f(x) g^{\prime \prime}(x) d x
$$

(5) b. Show that Definition 1 is a good definition, i.e. that it indeed defines an inner product.
(5) c. Prove that both definitions are equivalent.
(Hint: Partial integration.)
By virtue of equivalence you may omit the subscript henceforth: $\langle f \mid g\rangle=\langle f \mid g\rangle_{1}=\langle f \mid g\rangle_{2}$. With the help of this inner product we introduce, for arbitrary fixed $h \in C_{0}^{2}([0,1])$, the following linear mapping $P_{h}: C_{0}^{2}([0,1]) \rightarrow C_{0}^{2}([0,1])$:

Definition: $P_{h}(f)=\frac{\langle h \mid f\rangle}{\langle h \mid h\rangle} h$.
(5) d. Show that $P_{h} \circ P_{h}=P_{h}$. The infix operator \circ denotes composition.
e. Show that $P_{h}^{\dagger}=P_{h}$, i.e. $\left\langle g \mid P_{h} f\right\rangle=\left\langle P_{h} g \mid f\right\rangle$ for all $f, g \in C_{0}^{2}([0,1])$.

Consider the following two functions (notice that $f(x)=f(1-x)$ and $g(x)=g(1-x))$:

$$
f(x)=x^{4}-2 x^{3}+x^{2} \quad(0 \leq x \leq 1) \quad \text { and } \quad g(x)= \begin{cases}-4 x^{3}+3 x^{2} & \left(0 \leq x \leq \frac{1}{2}\right) \\ -4(1-x)^{3}+3(1-x)^{2} & \left(\frac{1}{2} \leq x \leq 1\right)\end{cases}
$$

($7 \frac{1}{2}$) f. Show that $f, g \in C_{0}^{2}([0,1])$.
(20) 3. Partial Differential Equations and Fourier Transformation

Consider the following partial differential equation (p.d.e.):

$$
\frac{\partial^{2} u}{\partial t^{2}}+\frac{\partial^{2} u}{\partial x^{2}}=0 \quad x \in \mathbb{R}, t>0
$$

Here $u: \mathbb{R} \times \mathbb{R}^{+} \longrightarrow \mathbb{R}:(x, t) \mapsto u(x, t)$ is a real valued spatial filter for each constant value of the parameter $t \in \mathbb{R}^{+}$.
(5) a. Consider, for fixed t, the Fourier decomposition

$$
u(x, t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{u}(\omega, t) e^{i \omega x} d \omega \quad \text { and thus } \quad \widehat{u}(\omega, t)=\int_{-\infty}^{\infty} u(x, t) e^{-i \omega x} d x .
$$

Show that with this definition the above p.d.e. for $u(x, t)$ can be reduced to the following ordinary differential equation for $\widehat{u}(\omega, t)$, in which $\omega \in \mathbb{R}$ can be interpreted as an arbitrary parameter:

$$
\frac{d^{2} \widehat{u}}{d t^{2}}-\omega^{2} \widehat{u}=0 \quad \omega \in \mathbb{R}, t>0
$$

(5) b. Show that the general solution for $\widehat{u}(\omega, t)$ is given by

$$
\widehat{u}(\omega, t)=A e^{-t|\omega|}+B e^{t|\omega|} .
$$

Here, A and B are two integration constants yet to be determined.
(Hint: Stipulate a solution of type $\widehat{u}(t)=e^{\lambda t}$ and determine the possible values of $\lambda \in \mathbb{C}$ in terms of ω.)
c. Determine the constants A en B based on the following assumptions:
c1. $\lim _{t \rightarrow \infty} \widehat{u}(\omega, t)=0$ for all $\omega \neq 0$.
c2. $\int_{-\infty}^{\infty} u(x, t) d x=1$ for all $t>0$.
(Hint: What does this normalization mean for $\widehat{u}(\omega, t)$?)
d. Take $(A, B)=(1,0)$, so $\widehat{u}(\omega, t)=e^{-t|\omega|}$. Determine $u(x, t)$.
(20)

4. Distribution Theory

We consider the function $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)$ given by

$$
f(x)=\left\{\begin{array}{cc}
0 & x<0 \\
e^{-x} & x \geq 0
\end{array}\right.
$$

and its associated regular tempered distribution $T_{f}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto T_{f}(\phi)=\int_{-\infty}^{\infty} f(x) \phi(x) d x$.
(10) a. Show that f satisfies the o.d.e. (ordinary differential equation) $u^{\prime}+u=0$ almost everywhere, and explain what the annotation "almost everywhere" means in this case.
(10) b. Show that, in distributional sense, T_{f} satisfies the o.d.e. $u^{\prime}+u=\delta$, in which the right hand side denotes the Dirac point distribution.
(Hint: What does it mean for $u^{\prime}+u-\delta$ to be a distribution rather than a regular function?)

THE END

