MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS HOMEWORK ASSIGNMENT

Course code: 8D020. Teacher: Dr L.M.J. Florack, WH 3.108 (secretariat WH 2.106), E L.M.J.Florack@tue.nl, T 040 2475377, F 040 2472740, W www.bmi2.bmt.tue.nl/image-analysis/people/lflorack

Read this first!

- Make this assignment by yourself or together with maximally one fellow student that has also subscribed for this course.
- Write your name(s) and student number(s) on each sheet.
- The deadline for handing in this assignment is Wednesday December 13 2006. Assignments arriving after this date will be ignored.
- This assignment will be evaluated with a grade between 0 and 1 . This is the bonus that will be added to your (re)examination grade in 2007. (The final grade cannot be higher than 10.)
- Provide clear arguments, and write neatly. Illegible or sloppy formulations will not be corrected. Explain conceptual steps in your proofs.

Problem 1. In this problem V is a vector space over \mathbb{R} equipped with a real inner product $\left\langle\left.\right|_{-}\right\rangle: V \times V \rightarrow \mathbb{R}$. Furthermore, $a \in V$ is a fixed unit vector: $\langle a \mid a\rangle=1$.
a. Show that the subset $V_{a} \subset V$ generated by a and defined as

$$
V_{a}=\{v \in V \mid\langle a \mid v\rangle=0\}
$$

constitutes a linear subspace of V.
b. The vector a, moreover, induces a mapping $\phi_{a}: V \rightarrow V$, as follows:

$$
\phi_{a}(v)=v-\langle a \mid v\rangle a
$$

$\left(\frac{1}{10}\right)$
b1. Prove that ϕ_{a} is a linear map.
b2. Prove that $\phi_{a}(v) \in V_{a}$ for all $v \in V$.
$\left(\frac{1}{10}\right)$
b3. Prove that $\phi_{a}\left(\phi_{a}(v)\right)=\phi_{a}(v)$ for all $v \in V$.
$\left(\frac{1}{10}\right)$
b4. Prove that $\left\langle\phi_{a}(v) \mid w\right\rangle=\left\langle v \mid \phi_{a}(w)\right\rangle$ for all $v, w \in V$.
$\left(\frac{1}{10}\right) \mathbf{b 5}$. Suppose $w \in V$ is such that $\left\langle\phi_{a}(v) \mid w\right\rangle=0$ for all $v \in V$. Show that $w=\lambda a$ for some $\lambda \in \mathbb{R}$ and determine the value of λ in terms of a en w.
(Hint: Use the previous part and the defining properties of the inner product.)

Problem 2. We define the set of functions $C_{0}^{\infty}(\mathbb{R})$ as follows:

$$
C_{0}^{\infty}(\mathbb{R})=\left\{f \in C^{\infty}(\mathbb{R}) \mid f^{(n)}(0)=0 \text { voor alle } n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}\right\}
$$

In this definition $f^{(n)}(x)$ stands for the n-th order derivative of f evaluated at x. The set $C^{\infty}(\mathbb{R})$ is the collection of all smooth real-valued functions with domain \mathbb{R}, endowed with the usual definitions of vector addition and scalar multiplication. You may take it for granted that $C^{\infty}(\mathbb{R})$ constitutes a linear space.
$\left(\frac{1}{10}\right)$ a. Provide (an) unambiguous formula(s) for the "usual definitions" alluded to above.
$\left(\frac{1}{10}\right) \quad$ b. Prove that $C_{0}^{\infty}(\mathbb{R}) \subset C^{\infty}(\mathbb{R})$ constitutes a linear subspace.
$\left(\frac{1}{10}\right) \quad$ c. Suppose $f \in C^{\omega}(\mathbb{R}) \cap C_{0}^{\infty}(\mathbb{R})$, i.e. f is an analytical function within the class $C_{0}^{\infty}(\mathbb{R})$. Show that $f=0$, i.e. the null function of $C_{0}^{\infty}(\mathbb{R})$.
(Hint: Analyticity implies that f is equal to its Taylor series.)
$\left(\frac{1}{10}\right)$ d. Show by means of an explicit example that $C_{0}^{\infty}(\mathbb{R})$ contains nontrivial elements $f \neq 0$. (Hint: Stipulate a function of type $f(x)=e^{g(x)}$ and deduce what properties the function g should have, then find a concrete instance.)

THE END

