
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00–12h00. Place: MA 1.44

Read this first!

• Write your name and student ID on each paper.

• The exam consists of 4 problems. Maximum credits are indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment,
including the problem companion (“opgaven- en tentamenbundel”), is not allowed.

• You may provide your answers in Dutch or English.

• Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Vector Space(35)

A real sequence s is an infinitely long array of the form s = (s1, s2, s3, . . .), with si ∈ R for all
i ∈ N. It is not difficult to show that the set S of all real sequences constitutes a real vector
space under entry-wise addition and scalar multiplication. (You may take this for granted.)

a1. Explain by formulas the meaning of “entry-wise addition and scalar multiplication” on S.(21
2)

Let s = (s1, s2, s3, . . .) ∈ S, t = (t1, t2, t3, . . .) ∈ S, λ ∈ R, then we define s + t = (s1 + t1, s2 + t2, s3 + t3, . . .) ∈ S and

λs = (λs1, λs2, λs3, . . .).

a2. What is the neutral element of S? What is the inverse element of s = (s1, s2, s3, . . .) ∈ S?(21
2)

The neutral element is n = (0, 0, 0, . . .) ∈ S. The inverse of s = (s1, s2, s3, . . .) ∈ S is (−s) def
= (−s1,−s2,−s3, . . .) ∈ S.

An arithmetic sequence a is a sequence of the form a = (a1, a2, a3, . . .) such that subsequent
terms have a common difference, i.e. for each such a sequence a there exists a constant c ∈ R
such that for all i ∈ N

ai+1 = ai + c .

By A we denote the set of all real-valued arithmetic sequences.

b. Prove that A ⊂ S is a vector space.(5)

Since S is a vector space we only need to prove closure. Suppose a = (a1, a2, a3, . . .) ∈ A, b = (b1, b2, b3, . . .) ∈ A, and

λ, µ ∈ R. By definition there exist constants c, d ∈ R such that ai+1 = ai + c and bi+1 = bi + d. Let s
def
= λa + µb ∈ A

be an arbitrary superposition, i.e. si = λai + µbi, then it follows that si+1 = λai+1 + µbi+1
∗
= λ(ai + c) + µ(bi + d) =

λai + µbi + λc+ µd = si + e for all i ∈ N, in which e
def
= λc+ µd ∈ R, so that we may conclude that, by definition, s ∈ A.

In ∗ we have likewise used the definition of A.
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An n-dimensional basis of A is a set {e1, . . . , en} of n linearly independent sequences ei ∈ A,
i = 1, . . . , n, such that every element a ∈ A can be written as a linear superposition of the form
a = λ1e1 + . . .+ λnen for certain coefficients λ1, . . . , λn ∈ R.

c1. State in terms of an explicit formula what “linear independence” of the basis elements in(21
2)
{e1, . . . , en} means.

λ1e1 + . . .+ λnen = n = (0, 0, 0, . . .) ∈ A iff λ1 = . . . = λn = 0.

c2. Show that, if such a basis exists, then, for any given a ∈ A, the coefficients λi in the linear(21
2)

superposition a = λ1e1 + . . .+ λnen are unique.

+Hint: Suppose a = λ1e1 + . . .+ λnen and a = µ1e1 + . . .+ µnen, consider the difference.

We have (0, 0, 0, . . .) = n = a− a = (λ1 − µ1)e1 + . . .+ (λn − µn)en. By c1 this is equivalent to λ1 = µ1, . . . , λn = µn.

d. Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What(5)
is the dimension?

Note that an arbitrary arithmetic sequence a ∈ A can be written as a = (a1, a1 + c, a1 +2c, a1 +3c, . . .) for some a1, c ∈ R.

This can be written as a = a1e1 + ce2, with e1 = (1, 1, 1, . . .), e2 = (0, 1, 2, . . .). Thus the linear space of arithmetic

sequences is 2-dimensional.

A geometric sequence g is a sequence of the form g = (g1, g2, g3, . . .) such that subsequent terms
have a common ratio, i.e. for each such a sequence g there exists a nonzero constant r ∈ R\{0}
such that for all i ∈ N

gi+1 = rgi .

By G we denote the set of all real-valued geometric sequences.

e. Prove that G ⊂ S is not a vector space.(5)

G fails to be closed. For suppose g ∈ G, h ∈ G, such that, for any i ∈ N, gi+1 = rgi and hi+1 = shi for some constants

r, s ∈ R\{0}. Then we observe that gi+1 +hi+1 = rgi+ shi. In general the right hand side cannot be written as t(gi+hi)

for some constant t ∈ R\{0}.

We restrict ourselves henceforth to the set of all positive geometric sequences, defined as
G+ = {g = (g1, g2, g3, . . .) ∈ G | gi > 0 for all i = 1, 2, 3, . . .}. On this set we introduce an
alternative definition for addition and scalar multiplication, according to the following rules. If
g = (g1, g2, g3, . . .) ∈ G+, h = (h1, h2, h3, . . .) ∈ G+, λ ∈ R, then

g ⊕ h = (g1h1, g2h2, g3h3, . . .) and λ⊗ g = (gλ1 , g
λ
2 , g

λ
3 , . . .) .

f. Show that G+ is closed under the actions of ⊕ and ⊗, and subsequently show that it is a(10)
vector space.

For closure we must show that g⊕h and λ⊗g as defined above are geometric sequences. We have (g⊕h)i+1
def
= gi+1hi+1

def
=

rgishi = rsgihi
def
= (rs)(g ⊕ h)i for some common ratios r, s 6= 0 (whence the effective common ratio equals rs 6= 0) and

all i ∈ N. Similarly, (λ ⊗ g)i+1
def
= gλi+1

def
= (rgi)

λ = rλgλi
def
= rλ(λ ⊗ g)i. Note that the effective common ratio rλ 6= 0 if
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r 6= 0. Now we cannot use the subspace theorem, since G+ 6⊂ G in the sense of a vector space inclusion, for the spaces

G+ and G have different vector operations.

♣

2. Group Theory(35)

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as
a, b ∈ G. Without loss of generality we may identify a = id, i.e. the identity element of G.

a. Show that either a = b = id, or, if a 6= b, that b = b−1.(5)

The option a = b = id produces the trivial 1-element group G = {id}. Suppose a 6= b, then, since a serves as the identity

element, we have ba = ab = b 6= a, from which it follows that a cannot be the inverse of b. By closure there is no other

option than that b equals its own inverse: b−1 = b, i.e. b2 = a.

We henceforth assume that a 6= b.

b. Provide the 2×2 group multiplication table of G, cf. the template below. With x1 =a, x2 =b,(5)
the (i, j)-th element in this table indicates xi ◦ xj .

Inspection of the result in a readily provides the full multiplication table:

◦ a b
a a b
b b a

Let T : R2\{(0, 0)} → R2\{(0, 0)} : (x, y) 7→ T (x, y) be given by T (x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
.

For k ∈ N we indicate k-fold concatenation of T by T k
def
= T ◦ . . .← k-fold→ . . . ◦ T . Moreover,

T−k
def
= (T inv)k, in which T inv is the inverse function of T . The identity element is identified

with T 0 : R2\{(0, 0)} → R2\{(0, 0)} : (x, y) 7→ id(x, y) = (x, y).

c. Show that T inv = T .(5)

+Hint: Set (x′, y′) = T (x, y), and consider the identity T inv(x′, y′) = (x, y).

Solving the following system for (x, y) in terms of (x′, y′)

x′ = x
x2+y2

y′ = y
x2+y2

yields

x = x′

(x′)2+(y′)2

y = y′

(x′)2+(y′)2

,
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so T inv(x′, y′) = T (x′, y′), i.e. T inv has the same functional form as T (suppress irrelevant primes attached to arguments).

Consider the set Θ =
{
T k : R2\{(0, 0)} → R2\{(0, 0)}

∣∣∣ k ∈ Z
}

.

We say that two groups, G and H say, are isomorphic, notation G ∼ H, if there is a one-to-one
correspondence φ : G → H : g 7→ h = φ(g) between their respective elements that preserves
the group structure, i.e. φ(g1) ◦H φ(g2) = φ(g1 ◦G g2), in which ◦G and ◦H are the infix group
operators on G, respectively H.

d. Show that the set Θ, furnished with the concatenation operator ◦, constitutes a group(5)
isomorphic to the 2-element group G of problem b.

Obviously T 6= T 0 = id. Since T inv = T according to c it follows from the definition of Tk that Tk = T if k is odd,

and Tk = T 0 = id if k is even, i.e. Θ = {T 0, T} is a 2-element group. We have seen in problems a and b that any

such 2-parameter group must have a multiplication table as given in b, with in the case at hand the formal substitutions

a→ T 0 = id and b = T . In other words, Θ ∼ G (as defined in a and b).

Next, consider the class of symmetric smooth functions of rapid decay,

Ssym(R)
def
= {φ ∈ S (R) | φ(x) = φ(−x)} .

We take it for granted that S (R) is closed under Fourier transformation, defined in this problem
with the following convention:

F (φ)(ω) =
1√
2π

∫ ∞
−∞

φ(x) e−iωx dx whence F inv(ψ)(x) =
1√
2π

∫ ∞
−∞

ψ(ω) eiωx dω .

e. Show that Ssym(R) is closed under Fourier transformation. +Hint: Ssym(R) ⊂ S (R).(5)

Since Ssym(R) ⊂ S (R), Fourier transform of φ ∈ Ssym(R) is well defined. We need to show that if φ(x) = φ(−x) for all
x ∈ R, i.e. φ ∈ Ssym(R), then also F (φ)(ω) = F (φ)(−ω), i.e. F (φ) ∈ Ssym(R). Indeed we have

F (φ)(ω) =
1
√

2π

∫ ∞
−∞

φ(x) e−iωx dx
∗
=

1
√

2π

∫ ∞
−∞

φ(−y) eiωy dy
?
=

1
√

2π

∫ ∞
−∞

φ(y) eiωy dy = F (φ)(−ω) ,

in which we have made use of a change of variables, y = −x, in ∗, and of the symmetry property φ(y) = φ(−y) in ?.

We now consider the set Φ =
{

F k : Ssym(R)→ Ssym(R)
∣∣∣ k ∈ Z

}
.

f. Show that this set, furnished with the concatenation operator ◦, constitutes a group that is(5)
likewise isomorphic to the 2-element group G of problem b, but that this is not the case if we
replace Ssym(R) by S (R) in the definition of Φ.

From the solution of problem e we may conclude that F (φ) = F inv(φ) for all φ ∈ Ssym(R) by virtue of step ? and the
particular definition of the Fourier transform in the case at hand. In other words, F = F inv as elements of Φ. Furthermore
we have

F2(φ)(ξ) =
1
√

2π

∫ ∞
−∞

1
√

2π

∫ ∞
−∞

φ(x)e−iωxdxe−iωξdω =
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−iω(x+ξ)dωφ(x)dx =

1

2π

∫ ∞
−∞

2πδ(x+ ξ)φ(x)dx = φ(−ξ) = φ(ξ) ,
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for all φ ∈ Ssym(R) and ξ ∈ R. In other words, F2 = F0 = id as elements of Φ. By the same token as in problem d we

may conclude that Φ ∼ G, for the 2-element group G of problem a and b.

Finally, we consider the 2-element matrix group under matrix multiplication

M =

{
I

def
=

(
1 0
0 1

)
, A

def
=

(
0 1
1 0

)}
,

and use it to construct the 2-dimensional linear space VM = {α I + β A |α, β ∈ R}

g. Show that VM is a semigroup, but not a group under matrix multiplication.(5)

Closure is obvious, since any product of matrices in VM will be a linear superposition of I and A as a result of the group

structure of M (and the definition of matrix superposition on VM ). Associativity likewise holds trivially, since it is a general

property of the matrix product. The group identity element of VM is clearly I, since I (α I+β A) = (α I+β A) I = α I+β A

for any α, β ∈ R. That VM is not a group follows, e.g., from the fact that the vector neutral element, the null matrix,

does not have an inverse. Another example which fails to have an inverse is I + A, for suppose α, β ∈ R are such that

I = (I +A)(α I + β A) = (α+ β) I + (α+ β)A, then α+ β = 1 and α+ β = 0, which is a contradiction.

♣
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3. Fourier Transformation(15)

In this problem we consider a general parametrization of the various one-dimensional Fourier
definitions one encounters in the literature:

F(a,b)(u)(ω) = b

∫ ∞
−∞

u(x) e−iaωx dx whence F inv
(a,b)(û)(x) =

|a|
2π b

∫ ∞
−∞

û(ω) eiaωx dω .

The parameter space is P
def
=
{

(a, b) ∈ R2 | a 6=0 , b>0
}

. Consider the following reparametrization:

T : P→ P : (a, b) 7→ (a′, b′) = T(a, b) with

 a′ = −a

b′ =
|a|

2π b

a1. Show that this is a good definition, in the sense that P is indeed closed under T as(21
2)

stipulated by the prototype “T : P→ P”, i.e. (a′, b′) ∈ P if (a, b) ∈ P.

If a 6= 0 then a′ = −a 6= 0 and if b > 0 then b′ = |a|/(2πb) > 0, so (a′, b′) ∈ P.

a2. Show that T is invertible, and that Tinv = T.(21
2)

+Hint: Solve (a, b) = Tinv(a′, b′).

We have T2(a, b) = T (−a, |a|/(2πb)) = (a, b), from which it follows that T2 = idP, i.e. Tinv = T.

Without proof we state that the normed space L2(R) of square-integrable, complex-valued
functions with domain R, is closed under Fourier transformation. The norm of a function
u ∈ L2(R) will be denoted by ‖u‖. Recall that

‖u‖2 =

∫ ∞
−∞

u(x)u∗(x) dx .

In the problems below you may, moreover, use the following lemma:

∫ ∞
−∞

e±i a y z dz =
2π

|a|
δ(y).

Let Q⊂P be the set of parameters for which ‖F(a,b)(u)(ω)‖2 =‖u‖2 for all u∈L2(R) (unitarity).

b. Determine Q, and show that the convention that was used in problem 1 provides an example(10)
of a unitary Fourier transform, i.e. show that (a, b) = (1, 1/

√
2π) ∈ Q.

Insert

u(x) =
|a|

2π b

∫ ∞
−∞

û(ω) eiaωx dω and u∗(x) =
|a|

2π b

∫ ∞
−∞

û∗(ω′) e−iaω
′x dω′

into

‖u‖2 =

∫ ∞
−∞

u(x)u∗(x) dx .

The result is

‖u‖2 =

[
|a|

2π b

]2 ∫ ∞
−∞

∫ ∞
−∞

û(ω) û∗(ω′)

∫ ∞
−∞

eia(ω−ω
′)x dx dω dω′ =

[
|a|

2π b

]2 ∫ ∞
−∞

∫ ∞
−∞

û(ω) û∗(ω′)
2π

|a|
δ(ω − ω′) dω dω′

=
|a|

2πb2

∫ ∞
−∞

û∗(ω) û∗(ω) dω =
|a|

2πb2
‖û‖2 .
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Unitarity requires |a| = 2πb2. Thus Q
def
=
{

(a, b) ∈ P | |a| = 2πb2
}

. In particular we observe that (a, b) = (1, 1/
√

2π) ∈ Q.

♣

4. Distribution Theory (Exam June 14, 2005, Problem 4)(15)

Consider the function f : R −→ R : x 7→ f(x), in which m > 0 is a constant, defined as

f(x) =


0 als x ≤ 0
mx als 0 < x < 1

m
1 als x ≥ 1

m

a. Determine the (classical) derivative f ′ of f . Clearly indicate the domain of definition of f ′.(5)

+Hint: Sketch the graph of f .

Het domein van f ′ is Dom f ′ = R\{0, 1
m
}. Het functievoorschrift is:

f ′(x) =


0 als x < 0
m als 0 < x < 1

m
0 als x > 1

m

De functie is niet gedefinieerd in de aansluitpunten x = 0 en x = 1
m

.

By Tf ∈ S ′(R) we denote the regular tempered distribution corresponding to the function f :

Tf : S(R) −→ R : φ 7→ Tf [φ]
def
=

∫ ∞
−∞

f(x)φ(x) dx .

Derivatives of regular tempered distributions are defined as usual: T
(k)
f [φ]

def
= (−1)k Tf [φ(k)].

The superscript k ∈ N indicates order of differentiation.

b. Show that T ′f [φ] = m

∫ 1
m

0
φ(x) dx, i.e. that T ′f = Tg, with g : R −→ R : x 7→ g(x) given by(5)

g(x) = mχ[0, 1
m

](x) .

Here, χI is the indicator function on the set I⊂R, i.e. χI(x)=1 if x∈I, χI(x)=0 if x 6∈I.

Er geldt

T ′f [φ]
def
= −Tf [φ′]

def
= −

∫ ∞
−∞

f(x)φ′(x) dx
def
= −m

∫ 1
m

0
xφ′(x) dx−

∫ ∞
1
m

φ′(x) dx

∗
= −m [xφ(x)]

1
m
0 +m

∫ 1
m

0
φ(x) dx− [φ(x)]∞1

m

?
= m

∫ 1
m

0
φ(x) dx

def
=

∫ ∞
−∞

g(x)φ(x) dx
def
= Tg [φ] ,

waarin g (respectievelijk Tg) de functie (respectievelijk reguliere getemperde distributie) is zoals hierboven gedefinieerd.

Bij ∗ is gebruik gemaakt van partiële integratie, bij ? zijn de randvoorwaarden gebruikt, met i.h.b. de eigenschap dat

lim
x→∞

φ(x) = 0 voor elke testfunctie φ ∈ S(R). Aangezien dit resultaat geldt voor alle φ ∈ S(R) volgt dat de distributies

in linker- en rechterlid gelijk zijn: T ′f = Tg .

c. Prove: lim
m→∞

T ′f = δ, in which δ is the Dirac distribution, δ : S(R) −→ R : φ 7→ δ[φ]
def
= φ(0)(5)
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+Hint: Substitute ξ = mx in the integral expression for T ′
f [φ] before taking the limit.

Volg de hint en gebruik het resultaat bij onderdeel b:

lim
m→∞

T ′f [φ]
b
= lim
m→∞

m

∫ 1
m

0
φ(x) dx

∗
= lim
m→∞

∫ 1

0
φ(

ξ

m
) dξ

?
=

∫ 1

0
φ(0) dξ = φ(0)

def
= δ[φ] .

Bij ∗ is de genoemde substitutie van variabelen uitgevoerd, bij ? zijn limiet- en integraaloperaties omgewisseld en in de

laatste stap is de definitie van de Dirac distributie gebruikt. Aangezien dit resultaat geldt voor alle φ ∈ S(R) volgt dat de

distributies in linker- en rechterlid gelijk zijn: limm→∞ T ′f = δ.

THE END

8


