EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00-12h00. Place: MA 1.44

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. Maximum credits are indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment, including the problem companion ("opgaven- en tentamenbundel"), is *not* allowed.
- You may provide your answers in Dutch or English.
- Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(35) 1. VECTOR SPACE

A real sequence s is an infinitely long array of the form $s = (s_1, s_2, s_3, ...)$, with $s_i \in \mathbb{R}$ for all $i \in \mathbb{N}$. It is not difficult to show that the set S of all real sequences constitutes a real vector space under entry-wise addition and scalar multiplication. (You may take this for granted.)

 $(2\frac{1}{2})$ a1. Explain by formulas the meaning of "entry-wise addition and scalar multiplication" on S.

Let $s = (s_1, s_2, s_3, ...) \in S$, $t = (t_1, t_2, t_3, ...) \in S$, $\lambda \in \mathbb{R}$, then we define $s + t = (s_1 + t_1, s_2 + t_2, s_3 + t_3, ...) \in S$ and $\lambda s = (\lambda s_1, \lambda s_2, \lambda s_3, ...)$.

 $(2\frac{1}{2})$ **a2.** What is the neutral element of S? What is the inverse element of $s = (s_1, s_2, s_3, \ldots) \in S$?

The neutral element is $n = (0, 0, 0, ...) \in S$. The inverse of $s = (s_1, s_2, s_3, ...) \in S$ is $(-s) \stackrel{\text{def}}{=} (-s_1, -s_2, -s_3, ...) \in S$.

An arithmetic sequence a is a sequence of the form $a = (a_1, a_2, a_3, ...)$ such that subsequent terms have a common difference, i.e. for each such a sequence a there exists a constant $c \in \mathbb{R}$ such that for all $i \in \mathbb{N}$

$$a_{i+1} = a_i + c \,.$$

By A we denote the set of all real-valued arithmetic sequences.

(5) **b.** Prove that $A \subset S$ is a vector space.

Since S is a vector space we only need to prove closure. Suppose $a = (a_1, a_2, a_3, ...) \in A$, $b = (b_1, b_2, b_3, ...) \in A$, and $\lambda, \mu \in \mathbb{R}$. By definition there exist constants $c, d \in \mathbb{R}$ such that $a_{i+1} = a_i + c$ and $b_{i+1} = b_i + d$. Let $s \stackrel{\text{def}}{=} \lambda a + \mu b \in A$ be an arbitrary superposition, i.e. $s_i = \lambda a_i + \mu b_i$, then it follows that $s_{i+1} = \lambda a_{i+1} + \mu b_{i+1} \stackrel{*}{=} \lambda (a_i + c) + \mu (b_i + d) = \lambda a_i + \mu b_i + \lambda c + \mu d = s_i + e$ for all $i \in \mathbb{N}$, in which $e \stackrel{\text{def}}{=} \lambda c + \mu d \in \mathbb{R}$, so that we may conclude that, by definition, $s \in A$. In * we have likewise used the definition of A.

An *n*-dimensional basis of A is a set $\{e_1, \ldots, e_n\}$ of *n* linearly independent sequences $e_i \in A$, $i = 1, \ldots, n$, such that every element $a \in A$ can be written as a linear superposition of the form $a = \lambda_1 e_1 + \ldots + \lambda_n e_n$ for certain coefficients $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

 $(2\frac{1}{2})$ **c1.** State in terms of an explicit formula what "linear independence" of the basis elements in $\{e_1, \ldots, e_n\}$ means.

 $\lambda_1 e_1 + \ldots + \lambda_n e_n = n = (0, 0, 0, \ldots) \in \mathcal{A} \text{ iff } \lambda_1 = \ldots = \lambda_n = 0.$

 $(2\frac{1}{2})$ **c2.** Show that, if such a basis exists, then, for any given $a \in A$, the coefficients λ_i in the linear superposition $a = \lambda_1 e_1 + \ldots + \lambda_n e_n$ are unique.

IF HINT: SUPPOSE $a = \lambda_1 e_1 + \ldots + \lambda_n e_n$ and $a = \mu_1 e_1 + \ldots + \mu_n e_n$, consider the difference.

We have $(0,0,0,\ldots) = n = a - a = (\lambda_1 - \mu_1)e_1 + \ldots + (\lambda_n - \mu_n)e_n$. By c1 this is equivalent to $\lambda_1 = \mu_1,\ldots,\lambda_n = \mu_n$.

(5) **d.** Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What is the dimension?

Note that an arbitrary arithmetic sequence $a \in A$ can be written as $a = (a_1, a_1 + c, a_1 + 2c, a_1 + 3c, ...)$ for some $a_1, c \in \mathbb{R}$. This can be written as $a = a_1e_1 + ce_2$, with $e_1 = (1, 1, 1, ...)$, $e_2 = (0, 1, 2, ...)$. Thus the linear space of arithmetic sequences is 2-dimensional.

A geometric sequence g is a sequence of the form $g = (g_1, g_2, g_3, ...)$ such that subsequent terms have a common ratio, i.e. for each such a sequence g there exists a nonzero constant $r \in \mathbb{R} \setminus \{0\}$ such that for all $i \in \mathbb{N}$

$$g_{i+1} = rg_i.$$

By G we denote the set of all real-valued geometric sequences.

(5) **e.** Prove that $G \subset S$ is *not* a vector space.

G fails to be closed. For suppose $g \in G$, $h \in G$, such that, for any $i \in \mathbb{N}$, $g_{i+1} = rg_i$ and $h_{i+1} = sh_i$ for some constants $r, s \in \mathbb{R} \setminus \{0\}$. Then we observe that $g_{i+1} + h_{i+1} = rg_i + sh_i$. In general the right hand side cannot be written as $t(g_i + h_i)$ for some constant $t \in \mathbb{R} \setminus \{0\}$.

We restrict ourselves henceforth to the set of all *positive* geometric sequences, defined as $G^+ = \{g = (g_1, g_2, g_3, \ldots) \in G \mid g_i > 0 \text{ for all } i = 1, 2, 3, \ldots\}$. On this set we introduce an alternative definition for addition and scalar multiplication, according to the following rules. If $g = (g_1, g_2, g_3, \ldots) \in G^+$, $h = (h_1, h_2, h_3, \ldots) \in G^+$, $\lambda \in \mathbb{R}$, then

 $g \oplus h = (g_1h_1, g_2h_2, g_3h_3, \ldots)$ and $\lambda \otimes g = (g_1^{\lambda}, g_2^{\lambda}, g_3^{\lambda}, \ldots)$.

(10) **f.** Show that G^+ is closed under the actions of \oplus and \otimes , and subsequently show that it is a vector space.

For closure we must show that $g \oplus h$ and $\lambda \otimes g$ as defined above are geometric sequences. We have $(g \oplus h)_{i+1} \stackrel{\text{def}}{=} g_{i+1}h_{i+1} \stackrel{\text{def}}{=} rg_i sh_i = rsg_ih_i \stackrel{\text{def}}{=} (rs)(g \oplus h)_i$ for some common ratios $r, s \neq 0$ (whence the effective common ratio equals $rs \neq 0$) and all $i \in \mathbb{N}$. Similarly, $(\lambda \otimes g)_{i+1} \stackrel{\text{def}}{=} g_{i+1}^{\lambda} \stackrel{\text{def}}{=} (rg_i)^{\lambda} = r^{\lambda}g_i^{\lambda} \stackrel{\text{def}}{=} r^{\lambda}(\lambda \otimes g)_i$. Note that the effective common ratio $r^{\lambda} \neq 0$ if

 $r \neq 0$. Now we cannot use the subspace theorem, since $G^+ \not\subset G$ in the sense of a vector space inclusion, for the spaces G^+ and G have different vector operations.

(**35**) **2.** Group Theory

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as $a, b \in G$. Without loss of generality we may identify a = id, i.e. the identity element of G.

(5) **a.** Show that either a = b = id, or, if $a \neq b$, that $b = b^{-1}$.

The option a = b = id produces the trivial 1-element group $G = \{id\}$. Suppose $a \neq b$, then, since a serves as the identity element, we have $ba = ab = b \neq a$, from which it follows that a cannot be the inverse of b. By closure there is no other option than that b equals its own inverse: $b^{-1} = b$, i.e. $b^2 = a$.

We henceforth assume that $a \neq b$.

(5) **b.** Provide the 2×2 group multiplication table of G, cf. the template below. With $x_1 = a, x_2 = b$, the (i, j)-th element in this table indicates $x_i \circ x_j$.

Inspection of the result in a readily provides the full multiplication table:

0	a	b
a	a	b
b	b	a

Let
$$T : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\} : (x,y) \mapsto T(x,y)$$
 be given by $T(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$.

For $k \in \mathbb{N}$ we indicate k-fold concatenation of T by $T^k \stackrel{\text{def}}{=} T \circ \ldots \leftarrow k\text{-fold} \to \ldots \circ T$. Moreover, $T^{-k} \stackrel{\text{def}}{=} (T^{\text{inv}})^k$, in which T^{inv} is the inverse function of T. The identity element is identified with $T^0 : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\} : (x,y) \mapsto \text{id}(x,y) = (x,y)$.

(5) **c.** Show that $T^{\text{inv}} = T$.

IF HINT: Set (x', y') = T(x, y), and consider the identity $T^{inv}(x', y') = (x, y)$.

Solving the following system for (x, y) in terms of (x', y')

$$\begin{array}{rcl} x' & = & \frac{x}{x^2 + y^2} \\ y' & = & \frac{y}{x^2 + y^2} \end{array}$$

yields

$$\begin{array}{rcl} x & = & \frac{x}{(x')^2 + (y')^2} \\ y & = & \frac{y'}{(x')^2 + (y')^2} \end{array}, \end{array}$$

1

so $T^{\text{inv}}(x',y') = T(x',y')$, i.e. T^{inv} has the same functional form as T (suppress irrelevant primes attached to arguments).

Consider the set
$$\Theta = \left\{ T^k : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\} \mid k \in \mathbb{Z} \right\}.$$

We say that two groups, G and H say, are *isomorphic*, notation $G \sim H$, if there is a one-to-one correspondence $\phi : G \to H : g \mapsto h = \phi(g)$ between their respective elements that preserves the group structure, i.e. $\phi(g_1) \circ_H \phi(g_2) = \phi(g_1 \circ_G g_2)$, in which \circ_G and \circ_H are the infix group operators on G, respectively H.

(5) **d.** Show that the set Θ , furnished with the concatenation operator \circ , constitutes a group isomorphic to the 2-element group G of problem b.

Obviously $T \neq T^0 = \text{id.}$ Since $T^{\text{inv}} = T$ according to c it follows from the definition of T^k that $T^k = T$ if k is odd, and $T^k = T^0 = \text{id}$ if k is even, i.e. $\Theta = \{T^0, T\}$ is a 2-element group. We have seen in problems a and b that any such 2-parameter group must have a multiplication table as given in b, with in the case at hand the formal substitutions $a \to T^0 = \text{id}$ and b = T. In other words, $\Theta \sim G$ (as defined in a and b).

Next, consider the class of symmetric smooth functions of rapid decay,

$$\mathscr{S}_{\mathrm{sym}}(\mathbb{R}) \stackrel{\mathrm{def}}{=} \{ \phi \in \mathscr{S}(\mathbb{R}) \mid \phi(x) = \phi(-x) \} .$$

We take it for granted that $\mathscr{S}(\mathbb{R})$ is closed under Fourier transformation, defined in this problem with the following convention:

$$\mathscr{F}(\phi)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(x) \, e^{-i\omega x} \, dx \quad \text{whence} \quad \mathscr{F}^{\text{inv}}(\psi)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(\omega) \, e^{i\omega x} \, d\omega \, .$$

(5) **e.** Show that $\mathscr{S}_{sym}(\mathbb{R})$ is closed under Fourier transformation. \mathbb{S} HINT: $\mathscr{S}_{sym}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$.

Since $\mathscr{S}_{\text{sym}}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$, Fourier transform of $\phi \in \mathscr{S}_{\text{sym}}(\mathbb{R})$ is well defined. We need to show that if $\phi(x) = \phi(-x)$ for all $x \in \mathbb{R}$, i.e. $\phi \in \mathscr{S}_{\text{sym}}(\mathbb{R})$, then also $\mathscr{F}(\phi)(\omega) = \mathscr{F}(\phi)(-\omega)$, i.e. $\mathscr{F}(\phi) \in \mathscr{S}_{\text{sym}}(\mathbb{R})$. Indeed we have

$$\mathscr{F}(\phi)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(x) \, e^{-i\omega x} \, dx \stackrel{*}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(-y) \, e^{i\omega y} \, dy \stackrel{\star}{=} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(y) \, e^{i\omega y} \, dy = \mathscr{F}(\phi)(-\omega) \, dx,$$

in which we have made use of a change of variables, y = -x, in *, and of the symmetry property $\phi(y) = \phi(-y)$ in \star .

We now consider the set $\Phi = \Big\{ \mathscr{F}^k : \mathscr{S}_{\mathrm{sym}}(\mathbb{R}) \to \mathscr{S}_{\mathrm{sym}}(\mathbb{R}) \ \Big| \ k \in \mathbb{Z} \Big\}.$

(5) **f.** Show that this set, furnished with the concatenation operator \circ , constitutes a group that is likewise isomorphic to the 2-element group G of problem b, but that this is *not* the case if we replace $\mathscr{S}_{\text{sym}}(\mathbb{R})$ by $\mathscr{S}(\mathbb{R})$ in the definition of Φ .

From the solution of problem e we may conclude that $\mathscr{F}(\phi) = \mathscr{F}^{\text{inv}}(\phi)$ for all $\phi \in \mathscr{S}_{\text{sym}}(\mathbb{R})$ by virtue of step \star and the particular definition of the Fourier transform in the case at hand. In other words, $\mathscr{F} = \mathscr{F}^{\text{inv}}$ as elements of Φ . Furthermore we have

$$\mathscr{F}^{2}(\phi)(\xi) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(x) e^{-i\omega x} dx e^{-i\omega\xi} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\omega(x+\xi)} d\omega \phi(x) dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} 2\pi \delta(x+\xi) \phi(x) dx = \phi(-\xi) = \phi(\xi) ,$$

for all $\phi \in \mathscr{S}_{sym}(\mathbb{R})$ and $\xi \in \mathbb{R}$. In other words, $\mathscr{F}^2 = \mathscr{F}^0 = id$ as elements of Φ . By the same token as in problem d we may conclude that $\Phi \sim G$, for the 2-element group G of problem a and b.

Finally, we consider the 2-element matrix group under matrix multiplication

$$M = \left\{ I \stackrel{\text{def}}{=} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), A \stackrel{\text{def}}{=} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\},$$

and use it to construct the 2-dimensional linear space $V_M = \{ \alpha I + \beta A \mid \alpha, \beta \in \mathbb{R} \}$

(5) **g.** Show that V_M is a semigroup, but *not* a group under matrix multiplication.

Closure is obvious, since any product of matrices in V_M will be a linear superposition of I and A as a result of the group structure of M (and the definition of matrix superposition on V_M). Associativity likewise holds trivially, since it is a general property of the matrix product. The group identity element of V_M is clearly I, since $I(\alpha I + \beta A) = (\alpha I + \beta A) I = \alpha I + \beta A$ for any $\alpha, \beta \in \mathbb{R}$. That V_M is not a group follows, e.g., from the fact that the vector neutral element, the null matrix, does not have an inverse. Another example which fails to have an inverse is I + A, for suppose $\alpha, \beta \in \mathbb{R}$ are such that $I = (I + A)(\alpha I + \beta A) = (\alpha + \beta) I + (\alpha + \beta) A$, then $\alpha + \beta = 1$ and $\alpha + \beta = 0$, which is a contradiction.

÷

(15) **3.** FOURIER TRANSFORMATION

In this problem we consider a general parametrization of the various one-dimensional Fourier definitions one encounters in the literature:

$$\mathscr{F}_{(a,b)}(u)(\omega) = b \int_{-\infty}^{\infty} u(x) e^{-ia\omega x} dx \quad \text{whence} \quad \mathscr{F}_{(a,b)}^{\text{inv}}(\hat{u})(x) = \frac{|a|}{2\pi b} \int_{-\infty}^{\infty} \hat{u}(\omega) e^{ia\omega x} d\omega$$

The parameter space is $\mathbf{P} \stackrel{\text{def}}{=} \{(a, b) \in \mathbb{R}^2 \mid a \neq 0, b > 0\}$. Consider the following reparametrization:

$$\mathbf{T}: \mathbf{P} \to \mathbf{P}: (a, b) \mapsto (a', b') = \mathbf{T}(a, b) \quad \text{with} \quad \begin{cases} a' = -a \\ b' = \frac{|a|}{2\pi b} \end{cases}$$

 $(2\frac{1}{2})$ **a1.** Show that this is a good definition, in the sense that P is indeed closed under T as stipulated by the prototype "T : P \rightarrow P", i.e. $(a', b') \in$ P if $(a, b) \in$ P.

If $a \neq 0$ then $a' = -a \neq 0$ and if b > 0 then $b' = |a|/(2\pi b) > 0$, so $(a', b') \in \mathbb{P}$.

(2¹/₂) **a2.** Show that T is invertible, and that $T^{inv} = T$. ^{IFF} HINT: SOLVE $(a, b) = T^{inv}(a', b')$.

We have $T^2(a,b) = T(-a, |a|/(2\pi b)) = (a,b)$, from which it follows that $T^2 = id_P$, i.e. $T^{inv} = T$.

Without proof we state that the normed space $L^2(\mathbb{R})$ of square-integrable, complex-valued functions with domain \mathbb{R} , is closed under Fourier transformation. The norm of a function $u \in L^2(\mathbb{R})$ will be denoted by ||u||. Recall that

$$||u||^2 = \int_{-\infty}^{\infty} u(x) u^*(x) dx.$$

In the problems below you may, moreover, use the following lemma: $\int_{-\infty}^{\infty} e^{\pm i \, a \, y \, z} \, dz = \frac{2\pi}{|a|} \, \delta(y).$

Let $\mathbf{Q} \subset \mathbf{P}$ be the set of parameters for which $\|\mathscr{F}_{(a,b)}(u)(\omega)\|^2 = \|u\|^2$ for all $u \in L^2(\mathbb{R})$ (unitarity).

(10) **b.** Determine Q, and show that the convention that was used in problem 1 provides an example of a unitary Fourier transform, i.e. show that $(a, b) = (1, 1/\sqrt{2\pi}) \in \mathbb{Q}$.

Insert

$$u(x) = \frac{|a|}{2\pi b} \int_{-\infty}^{\infty} \hat{u}(\omega) e^{ia\omega x} d\omega \quad \text{and} \quad u^*(x) = \frac{|a|}{2\pi b} \int_{-\infty}^{\infty} \hat{u}^*(\omega') e^{-ia\omega' x} d\omega'$$
$$\||u\|^2 = \int_{-\infty}^{\infty} u(x) u^*(x) dx.$$

into

The result is

$$\begin{split} \|u\|^2 &= \left[\frac{|a|}{2\pi b}\right]^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{u}(\omega) \, \hat{u}^*(\omega') \int_{-\infty}^{\infty} e^{ia(\omega-\omega')x} \, dx \, d\omega \, d\omega' \\ &= \left[\frac{|a|}{2\pi b^2}\right]^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{u}(\omega) \, \hat{u}^*(\omega') \, \frac{2\pi}{|a|} \delta(\omega-\omega') \, d\omega \, d\omega' \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{-\infty}^{\infty} \hat{u}^*(\omega) \, d\omega \\ &= \frac{|a|}{2\pi b^2} \int_{$$

Unitarity requires $|a| = 2\pi b^2$. Thus $Q \stackrel{\text{def}}{=} \{(a, b) \in P \mid |a| = 2\pi b^2\}$. In particular we observe that $(a, b) = (1, 1/\sqrt{2\pi}) \in Q$.

÷

(15) 4. DISTRIBUTION THEORY (EXAM JUNE 14, 2005, PROBLEM 4)

Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto f(x)$, in which m > 0 is a constant, defined as

$$f(x) = \begin{cases} 0 & \text{als } x \le 0\\ m x & \text{als } 0 < x < \frac{1}{m}\\ 1 & \text{als } x \ge \frac{1}{m} \end{cases}$$

(5) **a.** Determine the (classical) derivative f' of f. Clearly indicate the domain of definition of f'. For HINT: SKETCH THE GRAPH OF f.

Het domein van f' is Dom $f' = \mathbb{R} \setminus \{0, \frac{1}{m}\}$. Het functievoorschrift is:

$$f'(x) = \begin{cases} 0 & \text{als } x < 0\\ m & \text{als } 0 < x < \frac{1}{m}\\ 0 & \text{als } x > \frac{1}{m} \end{cases}$$

De functie is niet gedefinieerd in de aansluitpunten x = 0 en $x = \frac{1}{m}$.

By $T_f \in \mathcal{S}'(\mathbb{R})$ we denote the regular tempered distribution corresponding to the function f:

$$T_f: \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R}: \phi \mapsto T_f[\phi] \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(x) \phi(x) \, dx$$

Derivatives of regular tempered distributions are defined as usual: $T_f^{(k)}[\phi] \stackrel{\text{def}}{=} (-1)^k T_f[\phi^{(k)}]$. The superscript $k \in \mathbb{N}$ indicates order of differentiation.

(5) **b.** Show that
$$T'_f[\phi] = m \int_0^{\frac{1}{m}} \phi(x) \, dx$$
, i.e. that $T'_f = T_g$, with $g : \mathbb{R} \longrightarrow \mathbb{R} : x \mapsto g(x)$ given by $g(x) = m \chi_{[0,\frac{1}{m}]}(x)$.

Here, χ_I is the indicator function on the set $I \subset \mathbb{R}$, i.e. $\chi_I(x) = 1$ if $x \in I$, $\chi_I(x) = 0$ if $x \notin I$.

Er geldt

$$\begin{split} T'_{f}[\phi] &\stackrel{\text{def}}{=} -T_{f}[\phi'] \stackrel{\text{def}}{=} -\int_{-\infty}^{\infty} f(x) \, \phi'(x) \, dx \stackrel{\text{def}}{=} -m \, \int_{0}^{\frac{1}{m}} x \, \phi'(x) \, dx - \int_{\frac{1}{m}}^{\infty} \phi'(x) \, dx \\ &\stackrel{*}{=} -m \, \left[x \, \phi(x) \right]_{0}^{\frac{1}{m}} + m \int_{0}^{\frac{1}{m}} \phi(x) \, dx - \left[\phi(x) \right]_{\frac{1}{m}}^{\infty} \stackrel{*}{=} m \int_{0}^{\frac{1}{m}} \phi(x) \, dx \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} g(x) \, \phi(x) \, dx \stackrel{\text{def}}{=} T_{g}[\phi] \,, \end{split}$$

waarin g (respectievelijk T_g) de functie (respectievelijk reguliere getemperde distributie) is zoals hierboven gedefinieerd. Bij * is gebruik gemaakt van partiële integratie, bij * zijn de randvoorwaarden gebruikt, met i.h.b. de eigenschap dat $\lim_{x\to\infty} \phi(x) = 0$ voor elke testfunctie $\phi \in S(\mathbb{R})$. Aangezien dit resultaat geldt voor alle $\phi \in S(\mathbb{R})$ volgt dat de distributies in linker- en rechterlid gelijk zijn: $T'_f = T_g$.

(5) **c.** Prove:
$$\lim_{m \to \infty} T'_f = \delta$$
, in which δ is the Dirac distribution, $\delta : \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R} : \phi \mapsto \delta[\phi] \stackrel{\text{def}}{=} \phi(0)$

if Hint: Substitute $\xi=mx$ in the integral expression for $T_f'[\phi]$ before taking the limit.

Volg de hint en gebruik het resultaat bij onderdeel b:

$$\lim_{m \to \infty} T'_f[\phi] \stackrel{\mathrm{b}}{=} \lim_{m \to \infty} m \int_0^{\frac{1}{m}} \phi(x) \, dx \stackrel{*}{=} \lim_{m \to \infty} \int_0^1 \phi(\frac{\xi}{m}) \, d\xi \stackrel{\star}{=} \int_0^1 \phi(0) \, d\xi = \phi(0) \stackrel{\mathrm{def}}{=} \delta[\phi] \, .$$

Bij * is de genoemde substitutie van variabelen uitgevoerd, bij * zijn limiet- en integraaloperaties omgewisseld en in de laatste stap is de definitie van de Dirac distributie gebruikt. Aangezien dit resultaat geldt voor alle $\phi \in \mathcal{S}(\mathbb{R})$ volgt dat de distributies in linker- en rechterlid gelijk zijn: $\lim_{m\to\infty} T'_f = \delta$.

THE END