EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00-12h00. Place: MA 1.44

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. Maximum credits are indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment, including the problem companion ("opgaven- en tentamenbundel"), is not allowed.
- You may provide your answers in Dutch or English.
- Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(35) 1. Vector Space

A real sequence s is an infinitely long array of the form $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$, with $s_{i} \in \mathbb{R}$ for all $i \in \mathbb{N}$. It is not difficult to show that the set S of all real sequences constitutes a real vector space under entry-wise addition and scalar multiplication. (You may take this for granted.)
a1. Explain by formulas the meaning of "entry-wise addition and scalar multiplication" on S.
Let $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in \mathrm{S}, t=\left(t_{1}, t_{2}, t_{3}, \ldots\right) \in \mathrm{S}, \lambda \in \mathbb{R}$, then we define $s+t=\left(s_{1}+t_{1}, s_{2}+t_{2}, s_{3}+t_{3}, \ldots\right) \in \mathrm{S}$ and $\lambda s=\left(\lambda s_{1}, \lambda s_{2}, \lambda s_{3}, \ldots\right)$.
a2. What is the neutral element of S ? What is the inverse element of $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in \mathrm{S}$?

The neutral element is $n=(0,0,0, \ldots) \in \mathrm{S}$. The inverse of $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in \mathrm{S}$ is $(-s) \stackrel{\text { def }}{=}\left(-s_{1},-s_{2},-s_{3}, \ldots\right) \in \mathrm{S}$.
An arithmetic sequence a is a sequence of the form $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ such that subsequent terms have a common difference, i.e. for each such a sequence a there exists a constant $c \in \mathbb{R}$ such that for all $i \in \mathbb{N}$

$$
a_{i+1}=a_{i}+c .
$$

By A we denote the set of all real-valued arithmetic sequences.
b. Prove that $\mathrm{A} \subset \mathrm{S}$ is a vector space.

Since S is a vector space we only need to prove closure. Suppose $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in \mathrm{A}, b=\left(b_{1}, b_{2}, b_{3}, \ldots\right) \in \mathrm{A}$, and $\lambda, \mu \in \mathrm{R}$. By definition there exist constants $c, d \in \mathbb{R}$ such that $a_{i+1}=a_{i}+c$ and $b_{i+1}=b_{i}+d$. Let $s \stackrel{\text { def }}{=} \lambda a+\mu b \in \mathrm{~A}$ be an arbitrary superposition, i.e. $s_{i}=\lambda a_{i}+\mu b_{i}$, then it follows that $s_{i+1}=\lambda a_{i+1}+\mu b_{i+1} \stackrel{*}{=} \lambda\left(a_{i}+c\right)+\mu\left(b_{i}+d\right)=$ $\lambda a_{i}+\mu b_{i}+\lambda c+\mu d=s_{i}+e$ for all $i \in \mathbb{N}$, in which $e \stackrel{\text { def }}{=} \lambda c+\mu d \in \mathrm{R}$, so that we may conclude that, by definition, $s \in \mathrm{~A}$. In * we have likewise used the definition of A.

An n-dimensional basis of A is a set $\left\{e_{1}, \ldots, e_{n}\right\}$ of n linearly independent sequences $e_{i} \in \mathrm{~A}$, $i=1, \ldots, n$, such that every element $a \in \mathrm{~A}$ can be written as a linear superposition of the form $a=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ for certain coefficients $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.
c1. State in terms of an explicit formula what "linear independence" of the basis elements in $\left\{e_{1}, \ldots, e_{n}\right\}$ means.
$\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}=n=(0,0,0, \ldots) \in \mathrm{A}$ iff $\lambda_{1}=\ldots=\lambda_{n}=0$.
c2. Show that, if such a basis exists, then, for any given $a \in \mathrm{~A}$, the coefficients λ_{i} in the linear superposition $a=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ are unique.
Hint: Suppose $a=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ And $a=\mu_{1} e_{1}+\ldots+\mu_{n} e_{n}$, CONSIDER THE DIFFERENCE.

We have $(0,0,0, \ldots)=n=a-a=\left(\lambda_{1}-\mu_{1}\right) e_{1}+\ldots+\left(\lambda_{n}-\mu_{n}\right) e_{n}$. By c1 this is equivalent to $\lambda_{1}=\mu_{1}, \ldots, \lambda_{n}=\mu_{n}$.
d. Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What is the dimension?

Note that an arbitrary arithmetic sequence $a \in \mathrm{~A}$ can be written as $a=\left(a_{1}, a_{1}+c, a_{1}+2 c, a_{1}+3 c, \ldots\right)$ for some $a_{1}, c \in \mathbb{R}$. This can be written as $a=a_{1} e_{1}+c e_{2}$, with $e_{1}=(1,1,1, \ldots), e_{2}=(0,1,2, \ldots)$. Thus the linear space of arithmetic sequences is 2-dimensional.

A geometric sequence g is a sequence of the form $g=\left(g_{1}, g_{2}, g_{3}, \ldots\right)$ such that subsequent terms have a common ratio, i.e. for each such a sequence g there exists a nonzero constant $r \in \mathbb{R} \backslash\{0\}$ such that for all $i \in \mathbb{N}$

$$
g_{i+1}=r g_{i} .
$$

By G we denote the set of all real-valued geometric sequences.
e. Prove that $\mathrm{G} \subset \mathrm{S}$ is not a vector space.

G fails to be closed. For suppose $g \in \mathrm{G}, h \in \mathrm{G}$, such that, for any $i \in \mathbb{N}, g_{i+1}=r g_{i}$ and $h_{i+1}=s h_{i}$ for some constants $r, s \in \mathbb{R} \backslash\{0\}$. Then we observe that $g_{i+1}+h_{i+1}=r g_{i}+s h_{i}$. In general the right hand side cannot be written as $t\left(g_{i}+h_{i}\right)$ for some constant $t \in \mathbb{R} \backslash\{0\}$.

We restrict ourselves henceforth to the set of all positive geometric sequences, defined as $\mathrm{G}^{+}=\left\{g=\left(g_{1}, g_{2}, g_{3}, \ldots\right) \in \mathrm{G} \mid g_{i}>0\right.$ for all $\left.i=1,2,3, \ldots\right\}$. On this set we introduce an alternative definition for addition and scalar multiplication, according to the following rules. If $g=\left(g_{1}, g_{2}, g_{3}, \ldots\right) \in \mathrm{G}^{+}, h=\left(h_{1}, h_{2}, h_{3}, \ldots\right) \in \mathrm{G}^{+}, \lambda \in \mathbb{R}$, then

$$
g \oplus h=\left(g_{1} h_{1}, g_{2} h_{2}, g_{3} h_{3}, \ldots\right) \quad \text { and } \quad \lambda \otimes g=\left(g_{1}^{\lambda}, g_{2}^{\lambda}, g_{3}^{\lambda}, \ldots\right) .
$$

(10) f. Show that G^{+}is closed under the actions of \oplus and \otimes, and subsequently show that it is a vector space.

For closure we must show that $g \oplus h$ and $\lambda \otimes g$ as defined above are geometric sequences. We have $(g \oplus h)_{i+1} \stackrel{\text { def }}{=} g_{i+1} h_{i+1} \stackrel{\text { def }}{=}$ $r g_{i} s h_{i}=r s g_{i} h_{i} \stackrel{\text { def }}{=}(r s)(g \oplus h)_{i}$ for some common ratios $r, s \neq 0$ (whence the effective common ratio equals $r s \neq 0$) and all $i \in \mathbb{N}$. Similarly, $(\lambda \otimes g)_{i+1} \stackrel{\text { def }}{=} g_{i+1}^{\lambda} \stackrel{\text { def }}{=}\left(r g_{i}\right)^{\lambda}=r^{\lambda} g_{i}^{\lambda} \stackrel{\text { def }}{=} r^{\lambda}(\lambda \otimes g)_{i}$. Note that the effective common ratio $r^{\lambda} \neq 0$ if
$r \neq 0$. Now we cannot use the subspace theorem, since $\mathrm{G}^{+} \not \subset \mathrm{G}$ in the sense of a vector space inclusion, for the spaces G^{+}and G have different vector operations.

2. Group Theory

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as $a, b \in G$. Without loss of generality we may identify $a=\mathrm{id}$, i.e. the identity element of G.
(5) a. Show that either $a=b=$ id, or, if $a \neq b$, that $b=b^{-1}$.

The option $a=b=$ id produces the trivial 1-element group $G=\{\mathrm{id}\}$. Suppose $a \neq b$, then, since a serves as the identity element, we have $b a=a b=b \neq a$, from which it follows that a cannot be the inverse of b. By closure there is no other option than that b equals its own inverse: $b^{-1}=b$, i.e. $b^{2}=a$.

We henceforth assume that $a \neq b$.
(5) b. Provide the 2×2 group multiplication table of G, cf. the template below. With $x_{1}=a, x_{2}=b$, the (i, j)-th element in this table indicates $x_{i} \circ x_{j}$.

Inspection of the result in a readily provides the full multiplication table:

\circ	a	b
a	a	b
b	b	a

Let $T: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}:(x, y) \mapsto T(x, y)$ be given by $T(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$.
For $k \in \mathbb{N}$ we indicate k-fold concatenation of T by $T^{k} \stackrel{\text { def }}{=} T \circ \ldots \leftarrow k$-fold $\rightarrow \ldots \circ T$. Moreover, $T^{-k} \stackrel{\text { def }}{=}\left(T^{\mathrm{inv}}\right)^{k}$, in which T^{inv} is the inverse function of T. The identity element is identified with $T^{0}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}:(x, y) \mapsto \operatorname{id}(x, y)=(x, y)$.
c. Show that $T^{\text {inv }}=T$.

Hint: Set $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$, And consider the identity $T^{\text {inv }}\left(x^{\prime}, y^{\prime}\right)=(x, y)$.
Solving the following system for (x, y) in terms of $\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
x^{\prime} & =\frac{x}{x^{2}+y^{2}} \\
y^{\prime} & =\frac{y}{x^{2}+y^{2}}
\end{aligned}
$$

yields

$$
\begin{aligned}
x & =\frac{x^{\prime}}{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}} \\
y & =\frac{y^{\prime}}{\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}}
\end{aligned}
$$

so $T^{\mathrm{inv}}\left(x^{\prime}, y^{\prime}\right)=T\left(x^{\prime}, y^{\prime}\right)$, i.e. T^{inv} has the same functional form as T (suppress irrelevant primes attached to arguments).
Consider the set $\Theta=\left\{T^{k}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\} \mid k \in \mathbb{Z}\right\}$.
We say that two groups, G and H say, are isomorphic, notation $G \sim H$, if there is a one-to-one correspondence $\phi: G \rightarrow H: g \mapsto h=\phi(g)$ between their respective elements that preserves the group structure, i.e. $\phi\left(g_{1}\right) \circ_{H} \phi\left(g_{2}\right)=\phi\left(g_{1} \circ_{G} g_{2}\right)$, in which \circ_{G} and \circ_{H} are the infix group operators on G, respectively H.
(5) d. Show that the set Θ, furnished with the concatenation operator \circ, constitutes a group isomorphic to the 2 -element group G of problem b.

Obviously $T \neq T^{0}=$ id. Since $T^{\text {inv }}=T$ according to c it follows from the definition of T^{k} that $T^{k}=T$ if k is odd, and $T^{k}=T^{0}=$ id if k is even, i.e. $\Theta=\left\{T^{0}, T\right\}$ is a 2-element group. We have seen in problems a and b that any such 2-parameter group must have a multiplication table as given in b, with in the case at hand the formal substitutions $a \rightarrow T^{0}=\mathrm{id}$ and $b=T$. In other words, $\Theta \sim G($ as defined in a and b$)$.

Next, consider the class of symmetric smooth functions of rapid decay,

$$
\mathscr{S}_{\operatorname{sym}}(\mathbb{R}) \stackrel{\text { def }}{=}\{\phi \in \mathscr{S}(\mathbb{R}) \mid \phi(x)=\phi(-x)\}
$$

We take it for granted that $\mathscr{S}(\mathbb{R})$ is closed under Fourier transformation, defined in this problem with the following convention:

$$
\mathscr{F}(\phi)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(x) e^{-i \omega x} d x \quad \text { whence } \quad \mathscr{F}^{\text {inv }}(\psi)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(\omega) e^{i \omega x} d \omega
$$

(5) e. Show that $\mathscr{S}_{\text {sym }}(\mathbb{R})$ is closed under Fourier transformation. Hint: $\mathscr{S}_{\text {sym }}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$.

Since $\mathscr{S}_{\operatorname{sym}}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$, Fourier transform of $\phi \in \mathscr{S}_{\operatorname{sym}}(\mathbb{R})$ is well defined. We need to show that if $\phi(x)=\phi(-x)$ for all $x \in \mathbb{R}$, i.e. $\phi \in \mathscr{S}_{\operatorname{sym}}(\mathbb{R})$, then also $\mathscr{F}(\phi)(\omega)=\mathscr{F}(\phi)(-\omega)$, i.e. $\mathscr{F}(\phi) \in \mathscr{S}_{\text {sym }}(\mathbb{R})$. Indeed we have

$$
\mathscr{F}(\phi)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(x) e^{-i \omega x} d x \stackrel{*}{=} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(-y) e^{i \omega y} d y \stackrel{\star}{=} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(y) e^{i \omega y} d y=\mathscr{F}(\phi)(-\omega)
$$

in which we have made use of a change of variables, $y=-x$, in $*$, and of the symmetry property $\phi(y)=\phi(-y)$ in \star.
We now consider the set $\Phi=\left\{\mathscr{F}^{k}: \mathscr{S}_{\text {sym }}(\mathbb{R}) \rightarrow \mathscr{S}_{\text {sym }}(\mathbb{R}) \mid k \in \mathbb{Z}\right\}$.
(5) f. Show that this set, furnished with the concatenation operator \circ, constitutes a group that is likewise isomorphic to the 2 -element group G of problem b , but that this is not the case if we replace $\mathscr{S}_{\text {sym }}(\mathbb{R})$ by $\mathscr{S}(\mathbb{R})$ in the definition of Φ.

[^0]\[

$$
\begin{aligned}
\mathscr{F}^{2}(\phi)(\xi)= & \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(x) e^{-i \omega x} d x e^{-i \omega \xi} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i \omega(x+\xi)} d \omega \phi(x) d x= \\
& \frac{1}{2 \pi} \int_{-\infty}^{\infty} 2 \pi \delta(x+\xi) \phi(x) d x=\phi(-\xi)=\phi(\xi)
\end{aligned}
$$
\]

for all $\phi \in \mathscr{S}_{\operatorname{sym}}(\mathbb{R})$ and $\xi \in \mathbb{R}$. In other words, $\mathscr{F}^{2}=\mathscr{F}^{0}=$ id as elements of Φ. By the same token as in problem d we may conclude that $\Phi \sim G$, for the 2-element group G of problem a and b.

Finally, we consider the 2 -element matrix group under matrix multiplication

$$
M=\left\{I \stackrel{\text { def }}{=}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A \stackrel{\text { def }}{=}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\},
$$

and use it to construct the 2-dimensional linear space $V_{M}=\{\alpha I+\beta A \mid \alpha, \beta \in \mathbb{R}\}$
g. Show that V_{M} is a semigroup, but not a group under matrix multiplication.

Closure is obvious, since any product of matrices in V_{M} will be a linear superposition of I and A as a result of the group structure of M (and the definition of matrix superposition on V_{M}). Associativity likewise holds trivially, since it is a general property of the matrix product. The group identity element of V_{M} is clearly I, since $I(\alpha I+\beta A)=(\alpha I+\beta A) I=\alpha I+\beta A$ for any $\alpha, \beta \in \mathbb{R}$. That V_{M} is not a group follows, e.g., from the fact that the vector neutral element, the null matrix, does not have an inverse. Another example which fails to have an inverse is $I+A$, for suppose $\alpha, \beta \in \mathbb{R}$ are such that $I=(I+A)(\alpha I+\beta A)=(\alpha+\beta) I+(\alpha+\beta) A$, then $\alpha+\beta=1$ and $\alpha+\beta=0$, which is a contradiction.

3. Fourier Transformation

In this problem we consider a general parametrization of the various one-dimensional Fourier definitions one encounters in the literature:

$$
\mathscr{F}_{(a, b)}(u)(\omega)=b \int_{-\infty}^{\infty} u(x) e^{-i a \omega x} d x \quad \text { whence } \quad \mathscr{F}_{(a, b)}^{\text {inv }}(\hat{u})(x)=\frac{|a|}{2 \pi b} \int_{-\infty}^{\infty} \hat{u}(\omega) e^{i a \omega x} d \omega .
$$

The parameter space is $\mathrm{P} \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{R}^{2} \mid a \neq 0, b>0\right\}$. Consider the following reparametrization:

$$
\mathrm{T}: \mathrm{P} \rightarrow \mathrm{P}:(a, b) \mapsto\left(a^{\prime}, b^{\prime}\right)=\mathrm{T}(a, b) \quad \text { with } \quad\left\{\begin{aligned}
a^{\prime} & =-a \\
b^{\prime} & =\frac{|a|}{2 \pi b}
\end{aligned}\right.
$$

a1. Show that this is a good definition, in the sense that P is indeed closed under T as stipulated by the prototype "T : P $\rightarrow \mathrm{P}$ ", i.e. $\left(a^{\prime}, b^{\prime}\right) \in \mathrm{P}$ if $(a, b) \in \mathrm{P}$.

If $a \neq 0$ then $a^{\prime}=-a \neq 0$ and if $b>0$ then $b^{\prime}=|a| /(2 \pi b)>0$, so $\left(a^{\prime}, b^{\prime}\right) \in \mathrm{P}$.
a2. Show that T is invertible, and that $\mathrm{T}^{\mathrm{inv}}=\mathrm{T}$.
Hint: Solve $(a, b)=\mathrm{T}^{\text {inv }}\left(a^{\prime}, b^{\prime}\right)$.
We have $\mathrm{T}^{2}(a, b)=T(-a,|a| /(2 \pi b))=(a, b)$, from which it follows that $\mathrm{T}^{2}=$ idp, i.e. $\mathrm{T}^{\mathrm{inv}}=\mathrm{T}$.
Without proof we state that the normed space $L^{2}(\mathbb{R})$ of square-integrable, complex-valued functions with domain \mathbb{R}, is closed under Fourier transformation. The norm of a function $u \in L^{2}(\mathbb{R})$ will be denoted by $\|u\|$. Recall that

$$
\|u\|^{2}=\int_{-\infty}^{\infty} u(x) u^{*}(x) d x
$$

In the problems below you may, moreover, use the following lemma: $\int_{-\infty}^{\infty} e^{ \pm i a y z} d z=\frac{2 \pi}{|a|} \delta(y)$.
Let $\mathrm{Q} \subset \mathrm{P}$ be the set of parameters for which $\left\|\mathscr{F}_{(a, b)}(u)(\omega)\right\|^{2}=\|u\|^{2}$ for all $u \in L^{2}(\mathbb{R})$ (unitarity).
b. Determine Q, and show that the convention that was used in problem 1 provides an example of a unitary Fourier transform, i.e. show that $(a, b)=(1,1 / \sqrt{2 \pi}) \in \mathrm{Q}$.

Insert

$$
u(x)=\frac{|a|}{2 \pi b} \int_{-\infty}^{\infty} \hat{u}(\omega) e^{i a \omega x} d \omega \quad \text { and } \quad u^{*}(x)=\frac{|a|}{2 \pi b} \int_{-\infty}^{\infty} \hat{u}^{*}\left(\omega^{\prime}\right) e^{-i a \omega^{\prime} x} d \omega^{\prime}
$$

into

$$
\|u\|^{2}=\int_{-\infty}^{\infty} u(x) u^{*}(x) d x .
$$

The result is

$$
\begin{aligned}
\|u\|^{2} & =\left[\frac{|a|}{2 \pi b}\right]^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{u}(\omega) \hat{u}^{*}\left(\omega^{\prime}\right) \int_{-\infty}^{\infty} e^{i a\left(\omega-\omega^{\prime}\right) x} d x d \omega d \omega^{\prime}=\left[\frac{|a|}{2 \pi b}\right]^{2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \hat{u}(\omega) \hat{u}^{*}\left(\omega^{\prime}\right) \frac{2 \pi}{|a|} \delta\left(\omega-\omega^{\prime}\right) d \omega d \omega^{\prime} \\
& =\frac{|a|}{2 \pi b^{2}} \int_{-\infty}^{\infty} \hat{u}^{*}(\omega) \hat{u}^{*}(\omega) d \omega=\frac{|a|}{2 \pi b^{2}}\|\hat{u}\|^{2} .
\end{aligned}
$$

Unitarity requires $|a|=2 \pi b^{2}$. Thus $\mathrm{Q} \stackrel{\text { def }}{=}\left\{(a, b) \in \mathrm{P}\left||a|=2 \pi b^{2}\right\}\right.$. In particular we observe that $(a, b)=(1,1 / \sqrt{2 \pi}) \in \mathrm{Q}$.
(15) 4. Distribution Theory (Exam June 14, 2005, Problem 4)

Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto f(x)$, in which $m>0$ is a constant, defined as

$$
f(x)= \begin{cases}0 & \text { als } x \leq 0 \\ m x & \text { als } 0<x<\frac{1}{m} \\ 1 & \text { als } x \geq \frac{1}{m}\end{cases}
$$

a. Determine the (classical) derivative f^{\prime} of f. Clearly indicate the domain of definition of f^{\prime}. Hint: Sketch the graph of f.

Het domein van f^{\prime} is $\operatorname{Dom} f^{\prime}=\mathbb{R} \backslash\left\{0, \frac{1}{m}\right\}$. Het functievoorschrift is:

$$
f^{\prime}(x)= \begin{cases}0 & \text { als } x<0 \\ m & \text { als } 0<x<\frac{1}{m} \\ 0 & \text { als } x>\frac{1}{m}\end{cases}
$$

De functie is niet gedefinieerd in de aansluitpunten $x=0$ en $x=\frac{1}{m}$.
By $T_{f} \in \mathcal{S}^{\prime}(\mathbb{R})$ we denote the regular tempered distribution corresponding to the function f :

$$
T_{f}: \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R}: \phi \mapsto T_{f}[\phi] \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(x) \phi(x) d x
$$

Derivatives of regular tempered distributions are defined as usual: $T_{f}^{(k)}[\phi] \stackrel{\text { def }}{=}(-1)^{k} T_{f}\left[\phi^{(k)}\right]$. The superscript $k \in \mathbb{N}$ indicates order of differentiation.
b. Show that $T_{f}^{\prime}[\phi]=m \int_{0}^{\frac{1}{m}} \phi(x) d x$, i.e. that $T_{f}^{\prime}=T_{g}$, with $g: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto g(x)$ given by

$$
\begin{equation*}
g(x)=m \chi_{\left[0, \frac{1}{m}\right]}(x) . \tag{5}
\end{equation*}
$$

Here, χ_{I} is the indicator function on the set $I \subset \mathbb{R}$, i.e. $\chi_{I}(x)=1$ if $x \in I, \chi_{I}(x)=0$ if $x \notin I$.
Er geldt

$$
\begin{aligned}
T_{f}^{\prime}[\phi] & \stackrel{\text { def }}{=}-T_{f}\left[\phi^{\prime}\right] \stackrel{\text { def }}{=}-\int_{-\infty}^{\infty} f(x) \phi^{\prime}(x) d x \stackrel{\text { def }}{=}-m \int_{0}^{\frac{1}{m}} x \phi^{\prime}(x) d x-\int_{\frac{1}{m}}^{\infty} \phi^{\prime}(x) d x \\
& \stackrel{*}{=}-m[x \phi(x)]_{0}^{\frac{1}{m}}+m \int_{0}^{\frac{1}{m}} \phi(x) d x-[\phi(x)] \frac{1}{m} \stackrel{\star}{=} m \int_{0}^{\frac{1}{m}} \phi(x) d x \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} g(x) \phi(x) d x \stackrel{\text { def }}{=} T_{g}[\phi],
\end{aligned}
$$

waarin g (respectievelijk T_{g}) de functie (respectievelijk reguliere getemperde distributie) is zoals hierboven gedefinieerd. Bij $*$ is gebruik gemaakt van partiële integratie, bij \star zijn de randvoorwaarden gebruikt, met i.h.b. de eigenschap dat $\lim _{x \rightarrow \infty} \phi(x)=0$ voor elke testfunctie $\phi \in \mathcal{S}(\mathbb{R})$. Aangezien dit resultaat geldt voor alle $\phi \in \mathcal{S}(\mathbb{R})$ volgt dat de distributies in linker- en rechterlid gelijk zijn: $T_{f}^{\prime}=T_{g}$.
c. Prove: $\lim _{m \rightarrow \infty} T_{f}^{\prime}=\delta$, in which δ is the Dirac distribution, $\delta: \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R}: \phi \mapsto \delta[\phi] \stackrel{\text { def }}{=} \phi(0)$

Hint: Substitute $\xi=m x$ in the integral expression for $T_{f}^{\prime}[\phi]$ before taking the limit. Volg de hint en gebruik het resultaat bij onderdeel b:

$$
\lim _{m \rightarrow \infty} T_{f}^{\prime}[\phi] \stackrel{\mathrm{b}}{=} \lim _{m \rightarrow \infty} m \int_{0}^{\frac{1}{m}} \phi(x) d x \stackrel{*}{=} \lim _{m \rightarrow \infty} \int_{0}^{1} \phi\left(\frac{\xi}{m}\right) d \xi \stackrel{\star}{=} \int_{0}^{1} \phi(0) d \xi=\phi(0) \stackrel{\text { def }}{=} \delta[\phi]
$$

$\mathrm{Bij} *$ is de genoemde substitutie van variabelen uitgevoerd, bij \star zijn limiet- en integraaloperaties omgewisseld en in de laatste stap is de definitie van de Dirac distributie gebruikt. Aangezien dit resultaat geldt voor alle $\phi \in \mathcal{S}(\mathbb{R})$ volgt dat de distributies in linker- en rechterlid gelijk zijn: $\lim _{m \rightarrow \infty} T_{f}^{\prime}=\delta$.

THE END

[^0]: From the solution of problem e we may conclude that $\mathscr{F}(\phi)=\mathscr{F}^{\text {inv }}(\phi)$ for all $\phi \in \mathscr{S}_{\operatorname{sym}}(\mathbb{R})$ by virtue of step \star and the particular definition of the Fourier transform in the case at hand. In other words, $\mathscr{F}=\mathscr{F}^{\text {inv }}$ as elements of Φ. Furthermore we have

