EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00-12h00. Place: MA 1.44

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. Maximum credits are indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment, including the problem companion ("opgaven- en tentamenbundel"), is *not* allowed.
- You may provide your answers in Dutch or English.
- Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(35) 1. VECTOR SPACE

A real sequence s is an infinitely long array of the form $s = (s_1, s_2, s_3, ...)$, with $s_i \in \mathbb{R}$ for all $i \in \mathbb{N}$. It is not difficult to show that the set S of all real sequences constitutes a real vector space under entry-wise addition and scalar multiplication. (You may take this for granted.)

- $(2\frac{1}{2})$ a1. Explain by formulas the meaning of "entry-wise addition and scalar multiplication" on S.
- $(2\frac{1}{2})$ a2. What is the neutral element of S? What is the inverse element of $s = (s_1, s_2, s_3, \ldots) \in S$?

An arithmetic sequence a is a sequence of the form $a = (a_1, a_2, a_3, ...)$ such that subsequent terms have a common difference, i.e. for each such a sequence a there exists a constant $c \in \mathbb{R}$ such that for all $i \in \mathbb{N}$

$$a_{i+1} = a_i + c \,.$$

By A we denote the set of all real-valued arithmetic sequences.

(5) **b.** Prove that $A \subset S$ is a vector space.

An *n*-dimensional basis of A is a set $\{e_1, \ldots, e_n\}$ of *n* linearly independent sequences $e_i \in A$, $i = 1, \ldots, n$, such that every element $a \in A$ can be written as a linear superposition of the form $a = \lambda_1 e_1 + \ldots + \lambda_n e_n$ for certain coefficients $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$.

- $(2\frac{1}{2})$ **c1.** State in terms of an explicit formula what "linear independence" of the basis elements in $\{e_1, \ldots, e_n\}$ means.
- $(2\frac{1}{2})$ **c2.** Show that, if such a basis exists, then, for any given $a \in A$, the coefficients λ_i in the linear superposition $a = \lambda_1 e_1 + \ldots + \lambda_n e_n$ are unique.

IF HINT: SUPPOSE $a = \lambda_1 e_1 + \ldots + \lambda_n e_n$ and $a = \mu_1 e_1 + \ldots + \mu_n e_n$, consider the difference.

(5) **d.** Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What is the dimension?

A geometric sequence g is a sequence of the form $g = (g_1, g_2, g_3, ...)$ such that subsequent terms have a common ratio, i.e. for each such a sequence g there exists a nonzero constant $r \in \mathbb{R} \setminus \{0\}$ such that for all $i \in \mathbb{N}$

$$g_{i+1} = rg_i \,.$$

By G we denote the set of all real-valued geometric sequences.

(5) **e.** Prove that $G \subset S$ is *not* a vector space.

We restrict ourselves henceforth to the set of all *positive* geometric sequences, defined as $G^+ = \{g = (g_1, g_2, g_3, \ldots) \in G \mid g_i > 0 \text{ for all } i = 1, 2, 3, \ldots\}$. On this set we introduce an alternative definition for addition and scalar multiplication, according to the following rules. If $g = (g_1, g_2, g_3, \ldots) \in G^+$, $h = (h_1, h_2, h_3, \ldots) \in G^+$, $\lambda \in \mathbb{R}$, then

$$g \oplus h = (g_1h_1, g_2h_2, g_3h_3, \ldots)$$
 and $\lambda \otimes g = (g_1^{\lambda}, g_2^{\lambda}, g_3^{\lambda}, \ldots)$.

(10) **f.** Show that G^+ is closed under the actions of \oplus and \otimes , and subsequently show that it is a vector space.

(35) 2. GROUP THEORY

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as $a, b \in G$. Without loss of generality we may identify a = id, i.e. the identity element of G.

÷

(5) **a.** Show that either a = b = id, or, if $a \neq b$, that $b = b^{-1}$.

We henceforth assume that $a \neq b$.

(5) **b.** Provide the 2×2 group multiplication table of G, cf. the template below. With $x_1 = a, x_2 = b$, the (i, j)-th element in this table indicates $x_i \circ x_j$.

0	a	b
a		
b		

Let
$$T: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\}: (x,y) \mapsto T(x,y)$$
 be given by $T(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$

For $k \in \mathbb{N}$ we indicate k-fold concatenation of T by $T^k \stackrel{\text{def}}{=} T \circ \ldots \leftarrow k\text{-fold} \to \ldots \circ T$. Moreover, $T^{-k} \stackrel{\text{def}}{=} (T^{\text{inv}})^k$, in which T^{inv} is the inverse function of T. The identity element is identified with $T^0 : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\} : (x,y) \mapsto \text{id}(x,y) = (x,y)$.

(5) **c.** Show that $T^{\text{inv}} = T$.

IF HINT: Set (x', y') = T(x, y), and consider the identity $T^{inv}(x', y') = (x, y)$.

Consider the set
$$\Theta = \left\{ T^k : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}^2 \setminus \{(0,0)\} \mid k \in \mathbb{Z} \right\}$$

We say that two groups, G and H say, are *isomorphic*, notation $G \sim H$, if there is a one-to-one correspondence $\phi : G \to H : g \mapsto h = \phi(g)$ between their respective elements that preserves the group structure, i.e. $\phi(g_1) \circ_H \phi(g_2) = \phi(g_1 \circ_G g_2)$, in which \circ_G and \circ_H are the infix group operators on G, respectively H.

(5) **d.** Show that the set Θ , furnished with the concatenation operator \circ , constitutes a group isomorphic to the 2-element group G of problem b.

Next, consider the class of symmetric smooth functions of rapid decay,

$$\mathscr{S}_{\mathrm{sym}}(\mathbb{R}) \stackrel{\mathrm{def}}{=} \{ \phi \in \mathscr{S}(\mathbb{R}) \mid \phi(x) = \phi(-x) \} .$$

We take it for granted that $\mathscr{S}(\mathbb{R})$ is closed under Fourier transformation, defined in this problem with the following convention:

$$\mathscr{F}(\phi)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \phi(x) \, e^{-i\omega x} \, dx \quad \text{whence} \quad \mathscr{F}^{\text{inv}}(\psi)(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \psi(\omega) \, e^{i\omega x} \, d\omega$$

(5) **e.** Show that $\mathscr{S}_{sym}(\mathbb{R})$ is closed under Fourier transformation. \mathbb{S} HINT: $\mathscr{S}_{sym}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$.

We now consider the set $\Phi = \Big\{ \mathscr{F}^k : \mathscr{S}_{\text{sym}}(\mathbb{R}) \to \mathscr{S}_{\text{sym}}(\mathbb{R}) \ \Big| \ k \in \mathbb{Z} \Big\}.$

(5) **f.** Show that this set, furnished with the concatenation operator \circ , constitutes a group that is likewise isomorphic to the 2-element group G of problem b, but that this is *not* the case if we replace $\mathscr{S}_{\text{sym}}(\mathbb{R})$ by $\mathscr{S}(\mathbb{R})$ in the definition of Φ .

Finally, we consider the 2-element matrix group under matrix multiplication

$$M = \left\{ I \stackrel{\text{def}}{=} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) , \ A \stackrel{\text{def}}{=} \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\} .$$

and use it to construct the 2-dimensional linear space $V_M = \{ \alpha I + \beta A \mid \alpha, \beta \in \mathbb{R} \}$

(5) **g.** Show that V_M is a semigroup, but *not* a group under matrix multiplication.

Ļ

(15) **3.** FOURIER TRANSFORMATION

In this problem we consider a general parametrization of the various one-dimensional Fourier definitions one encounters in the literature:

$$\mathscr{F}_{(a,b)}(u)(\omega) = b \int_{-\infty}^{\infty} u(x) e^{-ia\omega x} dx \quad \text{whence} \quad \mathscr{F}_{(a,b)}^{\text{inv}}(\hat{u})(x) = \frac{|a|}{2\pi b} \int_{-\infty}^{\infty} \hat{u}(\omega) e^{ia\omega x} d\omega$$

The parameter space is $\mathbf{P} \stackrel{\text{def}}{=} \{(a, b) \in \mathbb{R}^2 \mid a \neq 0, b > 0\}$. Consider the following reparametrization:

$$\mathbf{T}: \mathbf{P} \to \mathbf{P}: (a, b) \mapsto (a', b') = \mathbf{T}(a, b) \quad \text{with} \quad \begin{cases} a' = -a \\ b' = \frac{|a|}{2\pi b} \end{cases}$$

- $(2\frac{1}{2})$ **a1.** Show that this is a good definition, in the sense that P is indeed closed under T as stipulated by the prototype "T : P \rightarrow P", i.e. $(a', b') \in$ P if $(a, b) \in$ P.
- (2¹/₂) **a2.** Show that T is invertible, and that $T^{inv} = T$. ^{ISF} HINT: SOLVE $(a, b) = T^{inv}(a', b')$.

Without proof we state that the normed space $L^2(\mathbb{R})$ of square-integrable, complex-valued functions with domain \mathbb{R} , is closed under Fourier transformation. The norm of a function $u \in L^2(\mathbb{R})$ will be denoted by ||u||. Recall that

$$||u||^2 = \int_{-\infty}^{\infty} u(x) u^*(x) dx.$$

In the problems below you may, moreover, use the following lemma: $\int_{-\infty}^{\infty} e^{\pm i \, a \, y \, z} \, dz = \frac{2\pi}{|a|} \, \delta(y).$

Let $Q \subset P$ be the set of parameters for which $\|\mathscr{F}_{(a,b)}(u)(\omega)\|^2 = \|u\|^2$ for all $u \in L^2(\mathbb{R})$ (unitarity).

(10) **b.** Determine Q, and show that the convention that was used in problem 1 provides an example of a unitary Fourier transform, i.e. show that $(a, b) = (1, 1/\sqrt{2\pi}) \in \mathbb{Q}$.

+

(15) 4. DISTRIBUTION THEORY (EXAM JUNE 14, 2005, PROBLEM 4)

Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto f(x)$, in which m > 0 is a constant, defined as

$$f(x) = \begin{cases} 0 & \text{als } x \le 0\\ m x & \text{als } 0 < x < \frac{1}{m}\\ 1 & \text{als } x \ge \frac{1}{m} \end{cases}$$

(5) **a.** Determine the (classical) derivative f' of f. Clearly indicate the domain of definition of f'. For HINT: SKETCH THE GRAPH OF f. By $T_f \in \mathcal{S}'(\mathbb{R})$ we denote the regular tempered distribution corresponding to the function f:

$$T_f: \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R}: \phi \mapsto T_f[\phi] \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(x) \, \phi(x) \, dx \, .$$

Derivatives of regular tempered distributions are defined as usual: $T_f^{(k)}[\phi] \stackrel{\text{def}}{=} (-1)^k T_f[\phi^{(k)}]$. The superscript $k \in \mathbb{N}$ indicates order of differentiation.

(5) **b.** Show that
$$T'_f[\phi] = m \int_0^{\frac{1}{m}} \phi(x) \, dx$$
, i.e. that $T'_f = T_g$, with $g : \mathbb{R} \longrightarrow \mathbb{R} : x \mapsto g(x)$ given by $g(x) = m \chi_{[0,\frac{1}{m}]}(x)$.

Here, χ_I is the indicator function on the set $I \subset \mathbb{R}$, i.e. $\chi_I(x) = 1$ if $x \in I$, $\chi_I(x) = 0$ if $x \notin I$.

(5) **c.** Prove: $\lim_{m \to \infty} T'_f = \delta$, in which δ is the Dirac distribution, $\delta : \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R} : \phi \mapsto \delta[\phi] \stackrel{\text{def}}{=} \phi(0)$ ST HINT: SUBSTITUTE $\xi = mx$ in the integral expression for $T'_f[\phi]$ before taking the limit.

THE END