EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00-12h00. Place: MA 1.44

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. Maximum credits are indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment, including the problem companion ("opgaven- en tentamenbundel"), is not allowed.
- You may provide your answers in Dutch or English.
- Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

(35) 1. Vector Space

A real sequence s is an infinitely long array of the form $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$, with $s_{i} \in \mathbb{R}$ for all $i \in \mathbb{N}$. It is not difficult to show that the set S of all real sequences constitutes a real vector space under entry-wise addition and scalar multiplication. (You may take this for granted.)
a2. What is the neutral element of \mathbf{S} ? What is the inverse element of $s=\left(s_{1}, s_{2}, s_{3}, \ldots\right) \in \mathbf{S}$?
An arithmetic sequence a is a sequence of the form $a=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$ such that subsequent terms have a common difference, i.e. for each such a sequence a there exists a constant $c \in \mathbb{R}$ such that for all $i \in \mathbb{N}$

$$
a_{i+1}=a_{i}+c .
$$

By A we denote the set of all real-valued arithmetic sequences.
b. Prove that $\mathrm{A} \subset \mathrm{S}$ is a vector space.

An n-dimensional basis of A is a set $\left\{e_{1}, \ldots, e_{n}\right\}$ of n linearly independent sequences $e_{i} \in \mathrm{~A}$, $i=1, \ldots, n$, such that every element $a \in \mathrm{~A}$ can be written as a linear superposition of the form $a=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ for certain coefficients $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$.
c1. State in terms of an explicit formula what "linear independence" of the basis elements in $\left\{e_{1}, \ldots, e_{n}\right\}$ means.
c2. Show that, if such a basis exists, then, for any given $a \in \mathrm{~A}$, the coefficients λ_{i} in the linear superposition $a=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ are unique.
Hint: Suppose $a=\lambda_{1} e_{1}+\ldots+\lambda_{n} e_{n}$ and $a=\mu_{1} e_{1}+\ldots+\mu_{n} e_{n}$, CONSIDER THE DIFFERENCE.
(5) d. Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What is the dimension?

A geometric sequence g is a sequence of the form $g=\left(g_{1}, g_{2}, g_{3}, \ldots\right)$ such that subsequent terms have a common ratio, i.e. for each such a sequence g there exists a nonzero constant $r \in \mathbb{R} \backslash\{0\}$ such that for all $i \in \mathbb{N}$

$$
g_{i+1}=r g_{i} .
$$

By G we denote the set of all real-valued geometric sequences.
e. Prove that $\mathrm{G} \subset \mathrm{S}$ is not a vector space.

We restrict ourselves henceforth to the set of all positive geometric sequences, defined as $\mathrm{G}^{+}=\left\{g=\left(g_{1}, g_{2}, g_{3}, \ldots\right) \in \mathrm{G} \mid g_{i}>0\right.$ for all $\left.i=1,2,3, \ldots\right\}$. On this set we introduce an alternative definition for addition and scalar multiplication, according to the following rules. If $g=\left(g_{1}, g_{2}, g_{3}, \ldots\right) \in \mathrm{G}^{+}, h=\left(h_{1}, h_{2}, h_{3}, \ldots\right) \in \mathrm{G}^{+}, \lambda \in \mathbb{R}$, then

$$
g \oplus h=\left(g_{1} h_{1}, g_{2} h_{2}, g_{3} h_{3}, \ldots\right) \quad \text { and } \quad \lambda \otimes g=\left(g_{1}^{\lambda}, g_{2}^{\lambda}, g_{3}^{\lambda}, \ldots\right) .
$$

(10) f. Show that G^{+}is closed under the actions of \oplus and \otimes, and subsequently show that it is a vector space.
(35) 2. Group Theory

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as $a, b \in G$. Without loss of generality we may identify $a=\mathrm{id}$, i.e. the identity element of G.
(5) a. Show that either $a=b=$ id, or, if $a \neq b$, that $b=b^{-1}$.

We henceforth assume that $a \neq b$.
(5) b. Provide the 2×2 group multiplication table of G, cf. the template below. With $x_{1}=a, x_{2}=b$, the (i, j)-th element in this table indicates $x_{i} \circ x_{j}$.

\circ	a	b
a		
b		

Let $T: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}:(x, y) \mapsto T(x, y)$ be given by $T(x, y)=\left(\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right)$.

For $k \in \mathbb{N}$ we indicate k-fold concatenation of T by $T^{k} \stackrel{\text { def }}{=} T \circ \ldots \leftarrow k$-fold $\rightarrow \ldots \circ T$. Moreover, $T^{-k} \stackrel{\text { def }}{=}\left(T^{\text {inv }}\right)^{k}$, in which $T^{\text {inv }}$ is the inverse function of T. The identity element is identified with $T^{0}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\}:(x, y) \mapsto \operatorname{id}(x, y)=(x, y)$.
c. Show that $T^{\text {inv }}=T$.

Hint: Set $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$, And Consider the identity $T^{\operatorname{inv}}\left(x^{\prime}, y^{\prime}\right)=(x, y)$.
Consider the set $\Theta=\left\{T^{k}: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}^{2} \backslash\{(0,0)\} \mid k \in \mathbb{Z}\right\}$.
We say that two groups, G and H say, are isomorphic, notation $G \sim H$, if there is a one-to-one correspondence $\phi: G \rightarrow H: g \mapsto h=\phi(g)$ between their respective elements that preserves the group structure, i.e. $\phi\left(g_{1}\right) \circ_{H} \phi\left(g_{2}\right)=\phi\left(g_{1} \circ_{G} g_{2}\right)$, in which \circ_{G} and \circ_{H} are the infix group operators on G, respectively H.
(5) d. Show that the set Θ, furnished with the concatenation operator \circ, constitutes a group isomorphic to the 2 -element group G of problem b.

Next, consider the class of symmetric smooth functions of rapid decay,

$$
\mathscr{S}_{\mathrm{sym}}(\mathbb{R}) \stackrel{\text { def }}{=}\{\phi \in \mathscr{S}(\mathbb{R}) \mid \phi(x)=\phi(-x)\}
$$

We take it for granted that $\mathscr{S}(\mathbb{R})$ is closed under Fourier transformation, defined in this problem with the following convention:

$$
\mathscr{F}(\phi)(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi(x) e^{-i \omega x} d x \quad \text { whence } \quad \mathscr{F}^{\text {inv }}(\psi)(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \psi(\omega) e^{i \omega x} d \omega
$$

(5) e. Show that $\mathscr{S}_{\operatorname{sym}}(\mathbb{R})$ is closed under Fourier transformation. $\mathrm{Hint}: \mathscr{S}_{\text {sym }}(\mathbb{R}) \subset \mathscr{S}(\mathbb{R})$.

We now consider the set $\Phi=\left\{\mathscr{F}^{k}: \mathscr{S}_{\text {sym }}(\mathbb{R}) \rightarrow \mathscr{S}_{\text {sym }}(\mathbb{R}) \mid k \in \mathbb{Z}\right\}$.
(5) f. Show that this set, furnished with the concatenation operator \circ, constitutes a group that is likewise isomorphic to the 2-element group G of problem b, but that this is not the case if we replace $\mathscr{S}_{\text {sym }}(\mathbb{R})$ by $\mathscr{S}(\mathbb{R})$ in the definition of Φ.

Finally, we consider the 2 -element matrix group under matrix multiplication

$$
M=\left\{I \stackrel{\text { def }}{=}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), A \stackrel{\text { def }}{=}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\},
$$

and use it to construct the 2-dimensional linear space $V_{M}=\{\alpha I+\beta A \mid \alpha, \beta \in \mathbb{R}\}$
g. Show that V_{M} is a semigroup, but not a group under matrix multiplication.

(15) 3. Fourier Transformation

In this problem we consider a general parametrization of the various one-dimensional Fourier definitions one encounters in the literature:

$$
\mathscr{F}_{(a, b)}(u)(\omega)=b \int_{-\infty}^{\infty} u(x) e^{-i a \omega x} d x \quad \text { whence } \quad \mathscr{F}_{(a, b)}^{\text {inv }}(\hat{u})(x)=\frac{|a|}{2 \pi b} \int_{-\infty}^{\infty} \hat{u}(\omega) e^{i a \omega x} d \omega .
$$

The parameter space is $\mathrm{P} \stackrel{\text { def }}{=}\left\{(a, b) \in \mathbb{R}^{2} \mid a \neq 0, b>0\right\}$. Consider the following reparametrization:

$$
\mathrm{T}: \mathrm{P} \rightarrow \mathrm{P}:(a, b) \mapsto\left(a^{\prime}, b^{\prime}\right)=\mathrm{T}(a, b) \quad \text { with } \quad\left\{\begin{aligned}
a^{\prime} & =-a \\
b^{\prime} & =\frac{|a|}{2 \pi b}
\end{aligned}\right.
$$

a1. Show that this is a good definition, in the sense that P is indeed closed under T as stipulated by the prototype " $\mathrm{T}: \mathrm{P} \rightarrow \mathrm{P}$ ", i.e. $\left(a^{\prime}, b^{\prime}\right) \in \mathrm{P}$ if $(a, b) \in \mathrm{P}$.
a2. Show that T is invertible, and that $\mathrm{T}^{\mathrm{inv}}=\mathrm{T}$.
Hint: Solve $(a, b)=\mathrm{T}^{\text {inv }}\left(a^{\prime}, b^{\prime}\right)$.
Without proof we state that the normed space $L^{2}(\mathbb{R})$ of square-integrable, complex-valued functions with domain \mathbb{R}, is closed under Fourier transformation. The norm of a function $u \in L^{2}(\mathbb{R})$ will be denoted by $\|u\|$. Recall that

$$
\|u\|^{2}=\int_{-\infty}^{\infty} u(x) u^{*}(x) d x
$$

In the problems below you may, moreover, use the following lemma: $\int_{-\infty}^{\infty} e^{ \pm i a y z} d z=\frac{2 \pi}{|a|} \delta(y)$.
Let $\mathrm{Q} \subset \mathrm{P}$ be the set of parameters for which $\left\|\mathscr{F}_{(a, b)}(u)(\omega)\right\|^{2}=\|u\|^{2}$ for all $u \in L^{2}(\mathbb{R})$ (unitarity).
(10) b. Determine Q, and show that the convention that was used in problem 1 provides an example of a unitary Fourier transform, i.e. show that $(a, b)=(1,1 / \sqrt{2 \pi}) \in \mathrm{Q}$.
4. Distribution Theory (Exam June 14, 2005, Problem 4)

Consider the function $f: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto f(x)$, in which $m>0$ is a constant, defined as

$$
f(x)= \begin{cases}0 & \text { als } x \leq 0 \\ m x & \text { als } 0<x<\frac{1}{m} \\ 1 & \text { als } x \geq \frac{1}{m}\end{cases}
$$

(5) a. Determine the (classical) derivative f^{\prime} of f. Clearly indicate the domain of definition of f^{\prime}. Hint: Sketch the graph of f.

By $T_{f} \in \mathcal{S}^{\prime}(\mathbb{R})$ we denote the regular tempered distribution corresponding to the function f :

$$
T_{f}: \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R}: \phi \mapsto T_{f}[\phi] \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(x) \phi(x) d x
$$

Derivatives of regular tempered distributions are defined as usual: $T_{f}^{(k)}[\phi] \stackrel{\text { def }}{=}(-1)^{k} T_{f}\left[\phi^{(k)}\right]$. The superscript $k \in \mathbb{N}$ indicates order of differentiation.
b. Show that $T_{f}^{\prime}[\phi]=m \int_{0}^{\frac{1}{m}} \phi(x) d x$, i.e. that $T_{f}^{\prime}=T_{g}$, with $g: \mathbb{R} \longrightarrow \mathbb{R}: x \mapsto g(x)$ given by

$$
\begin{equation*}
g(x)=m \chi_{\left[0, \frac{1}{m}\right]}(x) . \tag{5}
\end{equation*}
$$

Here, χ_{I} is the indicator function on the set $I \subset \mathbb{R}$, i.e. $\chi_{I}(x)=1$ if $x \in I, \chi_{I}(x)=0$ if $x \notin I$.
c. Prove: $\lim _{m \rightarrow \infty} T_{f}^{\prime}=\delta$, in which δ is the Dirac distribution, $\delta: \mathcal{S}(\mathbb{R}) \longrightarrow \mathbb{R}: \phi \mapsto \delta[\phi] \stackrel{\text { def }}{=} \phi(0)$ Hint: Substitute $\xi=m x$ in the integral expression for $T_{f}^{\prime}[\phi]$ before taking the limit.

THE END

