
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 10, 2013. Time: 09h00–12h00. Place: MA 1.44

Read this first!

• Write your name and student ID on each paper.

• The exam consists of 4 problems. Maximum credits are indicated in the margin.

• Motivate your answers. The use of course notes is allowed. The use of any additional material or equipment,
including the problem companion (“opgaven- en tentamenbundel”), is not allowed.

• You may provide your answers in Dutch or English.

• Do not hesitate to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Vector Space(35)

A real sequence s is an infinitely long array of the form s = (s1, s2, s3, . . .), with si ∈ R for all
i ∈ N. It is not difficult to show that the set S of all real sequences constitutes a real vector
space under entry-wise addition and scalar multiplication. (You may take this for granted.)

a1. Explain by formulas the meaning of “entry-wise addition and scalar multiplication” on S.(21
2)

a2. What is the neutral element of S? What is the inverse element of s = (s1, s2, s3, . . .) ∈ S?(21
2)

An arithmetic sequence a is a sequence of the form a = (a1, a2, a3, . . .) such that subsequent
terms have a common difference, i.e. for each such a sequence a there exists a constant c ∈ R
such that for all i ∈ N

ai+1 = ai + c .

By A we denote the set of all real-valued arithmetic sequences.

b. Prove that A ⊂ S is a vector space.(5)

An n-dimensional basis of A is a set {e1, . . . , en} of n linearly independent sequences ei ∈ A,
i = 1, . . . , n, such that every element a ∈ A can be written as a linear superposition of the form
a = λ1e1 + . . .+ λnen for certain coefficients λ1, . . . , λn ∈ R.

c1. State in terms of an explicit formula what “linear independence” of the basis elements in(21
2)
{e1, . . . , en} means.

c2. Show that, if such a basis exists, then, for any given a ∈ A, the coefficients λi in the linear(21
2)

superposition a = λ1e1 + . . .+ λnen are unique.

+Hint: Suppose a = λ1e1 + . . .+ λnen and a = µ1e1 + . . .+ µnen, consider the difference.
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d. Show that A does indeed have a finite-dimensional basis, and provide one explicitly. What(5)
is the dimension?

A geometric sequence g is a sequence of the form g = (g1, g2, g3, . . .) such that subsequent terms
have a common ratio, i.e. for each such a sequence g there exists a nonzero constant r ∈ R\{0}
such that for all i ∈ N

gi+1 = rgi .

By G we denote the set of all real-valued geometric sequences.

e. Prove that G ⊂ S is not a vector space.(5)

We restrict ourselves henceforth to the set of all positive geometric sequences, defined as
G+ = {g = (g1, g2, g3, . . .) ∈ G | gi > 0 for all i = 1, 2, 3, . . .}. On this set we introduce an
alternative definition for addition and scalar multiplication, according to the following rules. If
g = (g1, g2, g3, . . .) ∈ G+, h = (h1, h2, h3, . . .) ∈ G+, λ ∈ R, then

g ⊕ h = (g1h1, g2h2, g3h3, . . .) and λ⊗ g = (gλ1 , g
λ
2 , g

λ
3 , . . .) .

f. Show that G+ is closed under the actions of ⊕ and ⊗, and subsequently show that it is a(10)
vector space.

♣

2. Group Theory(35)

In this problem we consider a finite group G consisting of 2 elements, to which we will refer as
a, b ∈ G. Without loss of generality we may identify a = id, i.e. the identity element of G.

a. Show that either a = b = id, or, if a 6= b, that b = b−1.(5)

We henceforth assume that a 6= b.

b. Provide the 2×2 group multiplication table of G, cf. the template below. With x1=a, x2=b,(5)
the (i, j)-th element in this table indicates xi ◦ xj .

◦ a b
a
b

Let T : R2\{(0, 0)} → R2\{(0, 0)} : (x, y) 7→ T (x, y) be given by T (x, y) =

(
x

x2 + y2
,

y

x2 + y2

)
.
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For k ∈ N we indicate k-fold concatenation of T by T k
def
= T ◦ . . .← k-fold→ . . . ◦ T . Moreover,

T−k
def
= (T inv)k, in which T inv is the inverse function of T . The identity element is identified

with T 0 : R2\{(0, 0)} → R2\{(0, 0)} : (x, y) 7→ id(x, y) = (x, y).

c. Show that T inv = T .(5)

+Hint: Set (x′, y′) = T (x, y), and consider the identity T inv(x′, y′) = (x, y).

Consider the set Θ =
{
T k : R2\{(0, 0)} → R2\{(0, 0)}

∣∣∣ k ∈ Z
}

.

We say that two groups, G and H say, are isomorphic, notation G ∼ H, if there is a one-to-one
correspondence φ : G → H : g 7→ h = φ(g) between their respective elements that preserves
the group structure, i.e. φ(g1) ◦H φ(g2) = φ(g1 ◦G g2), in which ◦G and ◦H are the infix group
operators on G, respectively H.

d. Show that the set Θ, furnished with the concatenation operator ◦, constitutes a group(5)
isomorphic to the 2-element group G of problem b.

Next, consider the class of symmetric smooth functions of rapid decay,

Ssym(R)
def
= {φ ∈ S (R) | φ(x) = φ(−x)} .

We take it for granted that S (R) is closed under Fourier transformation, defined in this problem
with the following convention:

F (φ)(ω) =
1√
2π

∫ ∞
−∞

φ(x) e−iωx dx whence F inv(ψ)(x) =
1√
2π

∫ ∞
−∞

ψ(ω) eiωx dω .

e. Show that Ssym(R) is closed under Fourier transformation. +Hint: Ssym(R) ⊂ S (R).(5)

We now consider the set Φ =
{

F k : Ssym(R)→ Ssym(R)
∣∣∣ k ∈ Z

}
.

f. Show that this set, furnished with the concatenation operator ◦, constitutes a group that is(5)
likewise isomorphic to the 2-element group G of problem b, but that this is not the case if we
replace Ssym(R) by S (R) in the definition of Φ.

Finally, we consider the 2-element matrix group under matrix multiplication

M =

{
I

def
=

(
1 0
0 1

)
, A

def
=

(
0 1
1 0

)}
,

and use it to construct the 2-dimensional linear space VM = {α I + β A |α, β ∈ R}

g. Show that VM is a semigroup, but not a group under matrix multiplication.(5)

♣

3



3. Fourier Transformation(15)

In this problem we consider a general parametrization of the various one-dimensional Fourier
definitions one encounters in the literature:

F(a,b)(u)(ω) = b

∫ ∞
−∞

u(x) e−iaωx dx whence F inv
(a,b)(û)(x) =

|a|
2π b

∫ ∞
−∞

û(ω) eiaωx dω .

The parameter space is P
def
=
{

(a, b) ∈ R2 | a 6=0 , b>0
}

. Consider the following reparametrization:

T : P→ P : (a, b) 7→ (a′, b′) = T(a, b) with

 a′ = −a

b′ =
|a|

2π b

a1. Show that this is a good definition, in the sense that P is indeed closed under T as(21
2)

stipulated by the prototype “T : P→ P”, i.e. (a′, b′) ∈ P if (a, b) ∈ P.

a2. Show that T is invertible, and that Tinv = T.(21
2)

+Hint: Solve (a, b) = Tinv(a′, b′).

Without proof we state that the normed space L2(R) of square-integrable, complex-valued
functions with domain R, is closed under Fourier transformation. The norm of a function
u ∈ L2(R) will be denoted by ‖u‖. Recall that

‖u‖2 =

∫ ∞
−∞

u(x)u∗(x) dx .

In the problems below you may, moreover, use the following lemma:

∫ ∞
−∞

e±i a y z dz =
2π

|a|
δ(y).

Let Q⊂P be the set of parameters for which ‖F(a,b)(u)(ω)‖2=‖u‖2 for all u∈L2(R) (unitarity).

b. Determine Q, and show that the convention that was used in problem 1 provides an example(10)
of a unitary Fourier transform, i.e. show that (a, b) = (1, 1/

√
2π) ∈ Q.

♣

4. Distribution Theory (Exam June 14, 2005, Problem 4)(15)

Consider the function f : R −→ R : x 7→ f(x), in which m > 0 is a constant, defined as

f(x) =


0 als x ≤ 0
mx als 0 < x < 1

m
1 als x ≥ 1

m

a. Determine the (classical) derivative f ′ of f . Clearly indicate the domain of definition of f ′.(5)

+Hint: Sketch the graph of f .
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By Tf ∈ S ′(R) we denote the regular tempered distribution corresponding to the function f :

Tf : S(R) −→ R : φ 7→ Tf [φ]
def
=

∫ ∞
−∞

f(x)φ(x) dx .

Derivatives of regular tempered distributions are defined as usual: T
(k)
f [φ]

def
= (−1)k Tf [φ(k)].

The superscript k ∈ N indicates order of differentiation.

b. Show that T ′f [φ] = m

∫ 1
m

0
φ(x) dx, i.e. that T ′f = Tg, with g : R −→ R : x 7→ g(x) given by(5)

g(x) = mχ[0, 1
m
](x) .

Here, χI is the indicator function on the set I⊂R, i.e. χI(x)=1 if x∈I, χI(x)=0 if x 6∈I.

c. Prove: lim
m→∞

T ′f = δ, in which δ is the Dirac distribution, δ : S(R) −→ R : φ 7→ δ[φ]
def
= φ(0)(5)

+Hint: Substitute ξ = mx in the integral expression for T ′
f [φ] before taking the limit.

THE END
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