REEXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 11, 2012. Time: 09h00-12h00. Place: MA 1.46.

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or any other equipment, is not allowed.
- You may provide your answers in Dutch or English.
- Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Inner Product Space

Consider the set

$$
V=\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f \in C(\mathbb{R}) \text { and } f(x)=\left\langle k_{x} \mid f\right\rangle\right\}
$$

in which $k_{x} \in V$ is a particular element of V for every $x \in \mathbb{R}$ and $\langle\mid\rangle: C(\mathbb{R}) \times C(\mathbb{R}) \rightarrow \mathbb{C}$ is a complex inner product on $C(\mathbb{R})$. We take it for granted that $C(\mathbb{R})$ is a complex inner product space given the usual definitions of function addition and complex scalar multiplication.
a. Show that the function k_{x} has the following properties:
(2 2)
a1. $k_{x}(y)=\left\langle k_{y} \mid k_{x}\right\rangle$;

Since $k_{x} \in V$ we have, by definition of $V, k_{x}(y)=\left\langle k_{y} \mid k_{x}\right\rangle$.
a2. $k_{x}(y)=\overline{k_{y}(x)}$ (in which \bar{z} denotes the complex conjugate of $z \in \mathbb{C}$);

Using the definition of V (first and last step) and the definition of a complex inner product (middle step) we find $k_{x}(y)=\left\langle k_{y} \mid k_{x}\right\rangle=\overline{\left\langle k_{x} \mid k_{y}\right\rangle}=\overline{k_{y}(x)}$.
a3. $k_{x}(x) \geq 0$ for all $x \in \mathbb{R}$.

By virtue of non-degeneracy of an inner product we have, for all $x \in \mathbb{R}, k_{x}(x)=\left\langle k_{x} \mid k_{x}\right\rangle \geq 0$.
The following diagrams are abstract representations for $k_{x}(y)$ and $\overline{k_{y}(x)}$:

a4. Explain what it means to say that these diagrams are mutually consistent.

Assuming that the orientation of the graphics should not matter you can interpret the second graph as a 180°-rotated copy of the first graph, with free labels x and y interchanged, i.e. as $k_{x}(y)$. But according to a2 this is identical to $\overline{k_{y}(x)}$, indeed the interpretation given to the second graph.
(10) b. Show that V is a complex vector space.
(8) Hint: Use The Linear subspace Theorem.

It is given that $C(\mathbb{R})$ is a complex vector space, with $V \subset C(\mathbb{R})$. So we need to prove only closure. Let $f, g \in V$ and $\lambda, \mu \in \mathbb{C}$, so in particular $f(x)=\left\langle k_{x} \mid f\right\rangle$ and $g(x)=\left\langle k_{x} \mid g\right\rangle$ for all $x \in \mathbb{R}$. We have $\left\langle k_{x} \mid \lambda f+\mu g\right\rangle \stackrel{*}{=} \lambda\left\langle k_{x} \mid f\right\rangle+\mu\left\langle k_{x} \mid g\right\rangle \stackrel{\star}{=}$ $\lambda f(x)+\mu g(x) \stackrel{\circ}{=}(\lambda f+\mu g)(x)$, so $\lambda f+\mu g \in V$. Here we have used the linearity property of a complex inner product $(*)$, the definition of $V(\star)$, and the usual definition of linear function superposition (०).

Below we take $\langle\mid\rangle: C(\mathbb{R}) \times C(\mathbb{R}) \rightarrow \mathbb{C}$ to be the standard complex inner product on $C(\mathbb{R})$.
(5) c. Explain what this means by giving the explicit formula for $\langle f \mid g\rangle$.

The standard complex inner product for one-dimensional functions is given by $\langle f \mid g\rangle=\int_{\mathbb{R}} \overline{f(x)} g(x) d x$.
(5) d. Explain and prove the following diagrammatic equality:

Hint: The unlabeled central dot on the r.h.s. represents an integration dummy.
The r.h.s. diagram symbolizes $k_{y}(x)=\int_{\mathbb{R}} \overline{k_{x}(z)} k_{y}(z) d z$. To see that this identity is correct, consider the l.h.s. diagram. By definition this diagram equals

$$
k_{y}(x) \stackrel{a 1}{=}\left\langle k_{x} \mid k_{y}\right\rangle \stackrel{c}{=} \int \overline{k_{x}(z)} k_{y}(z) d z \stackrel{a 1}{=} \int \overline{\left\langle k_{z} \mid k_{x}\right\rangle}\left\langle k_{z} \mid k_{y}\right\rangle d z
$$

The integrand on the r.h.s. consists of two factors, which can be diagrammatically represented as two oriented line elements with a common (dummy) label z, once with an incoming arrow and once with an outgoing arrow. By graphically "contracting" this dummy into a single inner node one obtains the diagram on the r.h.s.
(35) 2. Algebra (Exam March 8, 2005, Problem 1)

In this problem we consider the set $\mathcal{G} \stackrel{\text { def }}{=} \mathbb{R}^{2}$ endowed with certain internal and external operators. We identify an element $\theta \in \mathcal{G}$ with its column representation in \mathbb{R}^{2} :

$$
\theta \stackrel{\text { def }}{=}\binom{\theta_{1}}{\theta_{2}} \quad \text { in which } \theta_{1}, \theta_{2} \in \mathbb{R} \text { (the "components of } \theta \text { "). }
$$

To begin with we interpret \mathcal{G} as the linear space over \mathbb{R} by introducing vector addition and
scalar multiplication, in the usual way. The vector sum of $\eta, \theta \in \mathcal{G}$ is written as $\eta+\theta$, and the scalar multiple of $\theta \in \mathcal{G}$ and $\lambda \in \mathbb{R}$ as $\lambda \theta$.
(5) a. Explain what is meant by "the usual way" by indicating explicitly how $\eta+\theta$ and $\lambda \theta$ are defined in terms of their components.

For arbitrary $\lambda, \mu \in \mathbb{R}$ and $\eta, \theta \in \mathcal{G}$ we define

$$
\lambda \eta+\mu \theta \stackrel{\text { def }}{=}\binom{\lambda \eta_{1}+\mu \theta_{1}}{\lambda \eta_{2}+\mu \theta_{2}} .
$$

We furthermore introduce an algebraic operation, which we shall refer to as "multiplication". The "product" of $\eta, \theta \in \mathcal{G}$ is simply written as $\eta \theta$, for which we agree that, in terms of components,

$$
\eta \theta \stackrel{\text { def }}{=}\binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}} \in \mathcal{G} .
$$

(5) b. Prove that \mathcal{G}, endowed with the aforementioned multiplication operation, constitutes an algebra. Proceed as follows (without proof we take it for granted that \mathcal{G} is a linear space, cf. part a):
b1. Prove that $\forall \eta, \theta, \gamma \in \mathcal{G} \quad(\eta \theta) \gamma=\eta(\theta \gamma)$.
Expanding in terms of components we get

$$
\begin{aligned}
& (\eta \theta) \gamma \stackrel{\text { def }}{=} \\
& \binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}}\binom{\gamma_{1}}{\gamma_{2}} \stackrel{\text { def }}{=}\binom{\left(\eta_{1} \theta_{1}\right) \gamma_{1}}{\left(\eta_{1} \theta_{1}\right) \gamma_{2}+\left(\eta_{1} \theta_{2}+\eta_{2} \theta_{1}\right) \gamma_{1}} \stackrel{\star}{=}\binom{\eta_{1}\left(\theta_{1} \gamma_{1}\right)}{\eta_{1}\left(\theta_{1} \gamma_{2}+\theta_{2} \gamma_{1}\right)+\eta_{2}\left(\theta_{1} \gamma_{1}\right)} \stackrel{\text { def }}{=}\binom{\eta_{1}}{\eta_{2}}\binom{\theta_{1} \gamma_{1}}{\theta_{1} \gamma_{2}+\theta_{2} \gamma_{1}} \\
& \quad \eta(\theta \gamma) .
\end{aligned}
$$

The triviality marked with \star exploits associativity of ordinary multiplication on \mathbb{R}.
b2. Prove that $\forall \eta, \theta, \gamma \in \mathcal{G} \quad \eta(\theta+\gamma)=(\eta \theta)+(\eta \gamma)$.
$\eta(\theta+\gamma)=\binom{\eta_{1}}{\eta_{2}}\binom{\theta_{1}+\gamma_{1}}{\theta_{2}+\gamma_{2}}=\binom{\eta_{1}\left(\theta_{1}+\gamma_{1}\right)}{\eta_{1}\left(\theta_{2}+\gamma_{2}\right)+\eta_{2}\left(\theta_{1}+\gamma_{1}\right)} \stackrel{\star}{=}\binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}}+\binom{\eta_{1} \gamma_{1}}{\eta_{1} \gamma_{2}+\eta_{2} \gamma_{1}}=(\eta \theta)+(\eta \gamma)$.
In \star distributivity of ordinary multiplication on \mathbb{R} has been used to eliminate parentheses in the components and also of the definition of vector addition to split the column vector into two terms.
b3. Prove that $\forall \eta, \theta, \gamma \in \mathcal{G} \quad(\eta+\theta) \gamma=(\eta \gamma)+(\theta \gamma)$.
You can construct the proof in terms of components analogous to the solution for b2. Alternatively one can make use of commutativity (\star), which will be proven under d below, and of the distributivity property in part b2 (*):

$$
(\eta+\theta) \gamma \stackrel{\star}{=} \gamma(\eta+\theta) \stackrel{*}{=}(\gamma \eta)+(\gamma \theta) \stackrel{\star}{=}(\eta \gamma)+(\theta \gamma) .
$$

b4. Prove that $\forall \eta, \theta \in \mathcal{G}, \lambda \in \mathbb{R} \quad \lambda(\eta \theta)=(\lambda \eta) \theta=\eta(\lambda \theta)$.

We first prove the first equality:

$$
\lambda(\eta \theta) \stackrel{\text { def }}{=} \lambda\binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}} \stackrel{\star}{=}\binom{\lambda\left(\eta_{1} \theta_{1}\right)}{\lambda\left(\eta_{1} \theta_{2}+\eta_{2} \theta_{1}\right)} \stackrel{*}{=}\binom{\left(\lambda \eta_{1}\right) \theta_{1}}{\left.\left(\lambda \eta_{1}\right) \theta_{2}+\left(\lambda \eta_{2}\right) \theta_{1}\right)} \stackrel{\star}{=}\binom{(\lambda \eta)_{1} \theta_{1}}{\left.(\lambda \eta)_{1} \theta_{2}+(\lambda \eta)_{2} \theta_{1}\right)} \stackrel{\text { def }}{=}(\lambda \eta) \theta
$$

In \star we have used the definition of scalar multiplication, in $*$ we have used associativity of multiplication on \mathbb{R} to shift parentheses. In the first and last step the definition of multiplication on \mathcal{G} has been used. The second equality can be proven in a similar fashion, or with the help of commutativity (part d).
(5) c. Show that, moreover, there exists a unit element $1 \in \mathcal{G}$ (not to be confused with the number $1 \in \mathbb{R}$), and give its column representation in \mathbb{R}^{2}.

Call the components of $1 \in \mathcal{G} e_{1} \in \mathbb{R}$ respectively $e_{2} \in \mathbb{R}$. Let $x \in \mathcal{G}$ be arbitrary, and suppose

$$
1 x=\binom{e_{1}}{e_{2}}\binom{x_{1}}{x_{2}}=\binom{e_{1} x_{1}}{e_{1} x_{2}+e_{2} x_{1}} \stackrel{\text { def }}{=}\binom{x_{1}}{x_{2}}
$$

for all $x_{1}, x_{2} \in \mathbb{R}$, in which (in the final step) the definition of the identity element has been used, then it follows by necessity that $e_{1}=1$ and $e_{2}=0$. Conclusion:

$$
1 \stackrel{\text { def }}{=}\binom{1}{0}
$$

One still needs to verify whether $x 1=x$ for all $x \in \mathcal{G}$. We could do this by componentwise analysis as previously, or by exploiting once more commutativity, with a modest amount of foresight, cf. part d (\star):

$$
x 1 \stackrel{\star}{=} 1 x=x \quad \text { for all } x \in \mathcal{G} .
$$

(5) d. Is multiplication on \mathcal{G} commutative? If so, prove, if not, give a counter example.

Suppose $x, y \in \mathcal{G}$, then

$$
x y=\binom{x_{1}}{x_{2}}\binom{y_{1}}{y_{2}}=\binom{x_{1} y_{1}}{x_{1} y_{2}+x_{2} y_{1}}=\binom{y_{1} x_{1}}{y_{1} x_{2}+y_{2} x_{1}}=y x
$$

We now consider the subset $\mathcal{G}_{0} \subset \mathcal{G}$, defined by $\mathcal{G}_{0}=\left\{\theta \in \mathcal{G} \mid \theta^{2}=0\right\}$. (With θ^{2} we mean $\theta \theta$.)
(5) e. Give an explicit characterization of \mathcal{G}_{0} by indicating what the column representation in \mathbb{R}^{2} of an arbitrary element $\theta \in \mathcal{G}_{0}$ looks like.

In terms of components we have

$$
\theta^{2}=\binom{\theta_{1}^{2}}{2 \theta_{1} \theta_{2}} \stackrel{\text { def }}{=}\binom{0}{0}
$$

In the last step we have used the fact that $\theta \in \mathcal{G}_{0}$. This is equivalent to the condition $\theta_{1}=0$, i.e. an arbitrary element $\theta \in \mathcal{G}_{0}$ has the form

$$
\theta=\binom{0}{\theta_{2}}
$$

with $\theta_{2} \in \mathbb{R}$ arbitrary.
Finally we introduce on \mathcal{G} a degenerate, non-negative, symmetric, real valued, bilinear form. For $\eta, \theta \in \mathcal{G}$ this is indicated by $\langle\eta \mid \theta\rangle \in \mathbb{R}$. In terms of the components of η and θ we define this as follows:

$$
\langle\eta \mid \theta\rangle=\eta_{1} \theta_{1} .
$$

Caveat: The adjective "degenerate" indicates that $\langle\mid\rangle$ does not define an inner product.
f. Explain the adjective "degenerate" by explaining why $\langle\mid\rangle$ does not define an inner product.

For a (non-degenerate) inner product we have the condition that $\langle\theta \mid \theta\rangle=0$ iff $\theta=0 \in \mathcal{G}$. In the case of the definition above, however, we have $\langle\theta \mid \theta\rangle=0$ iff $\theta_{1}=0$, i.e. irrespective of the value of θ_{2}. Thus there are non-trivial elements $\theta \in \mathcal{G}$ (viz. all elements with $\theta_{1}=0$ and $\theta_{2} \neq 0$) for which $\langle\theta \mid \theta\rangle=0$ ("degeneracy").

We now consider the subset $\mathcal{G}_{1} \subset \mathcal{G}$, defined by $\mathcal{G}_{1}=\{\theta \in \mathcal{G} \mid\langle\theta \mid \theta\rangle=1\}$.
g. Prove that \mathcal{G}_{1} constitutes a group with respect to multiplication. Proceed as follows:
g1. Show that, if $\eta, \theta \in \mathcal{G}_{1}$ then $\eta \theta \in \mathcal{G}_{1}$ ("closure").

You need to show that the subset $\mathcal{G}_{1} \subset \mathcal{G}$ is closed under multiplication. Suppose $\eta, \theta \in \mathcal{G}_{1}$, then

$$
\eta \theta=\binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}} \quad \text { so }\langle\eta \theta \mid \eta \theta\rangle \stackrel{*}{=}(\eta \theta)_{1}^{2} \stackrel{\star}{=}\left(\eta_{1} \theta_{1}\right)^{2}=\eta_{1}^{2} \theta_{1}^{2}=\langle\eta \mid \eta\rangle\langle\theta \mid \theta\rangle=1
$$

In $*$ the definition of the bilinear form $\langle\eta \mid \theta\rangle \in \mathbb{R}$ has been used, in \star that of the (first component of) the algebraic product $\eta \theta \in \mathcal{G}$. In the last step the fact that $\eta, \theta \in \mathcal{G}_{1}$ has been used. Since $\langle\eta \theta \mid \eta \theta\rangle=1$ it follows that $\eta \theta \in \mathcal{G}_{1}$.
g2. Show that $\forall \eta, \theta, \gamma \in \mathcal{G}_{1} \quad(\eta \theta) \gamma=\eta(\theta \gamma)$ ("associativity").

Multiplication on \mathcal{G} is associative (cf. b1). Since $\mathcal{G}_{1} \subset \mathcal{G}$ it is also associative within \mathcal{G}_{1}.
g3. Show that the unit element of part c satisfies $1 \in \mathcal{G}_{1}$.
$\theta \in \mathcal{G}_{1}$ iff $\theta \in \mathcal{G}$ and $\langle\theta \mid \theta\rangle=1$. For the identity element it has already been shown in c that $1 \in \mathcal{G}$. Using the components of the identity element and the definition of the bilinear form it immediately follows that

$$
\langle 1 \mid 1\rangle=1 .
$$

Conclusion: $1 \in \mathcal{G}_{1}$.
g4. Show that, given $\theta \in \mathcal{G}_{1}$, there exists an inverse $\theta^{-1} \in \mathcal{G}_{1}$, such that $\theta \theta^{-1}=\theta^{-1} \theta=1 \in \mathcal{G}_{1}$. Give the column representation of θ^{-1} in \mathbb{R}^{2} in terms of the components of θ.

Given $\theta \in \mathcal{G}_{1}$ arbitrary. Write $\theta^{-1}=\eta$ for notational convenience. We must have $\eta \theta=1 \in \mathcal{G}_{1}$. (If this holds then $\theta \eta=1$ holds automatically by virtue of commutativity, recall part d.) In other words,

$$
\binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}}=\binom{1}{0}
$$

which can also be written as

$$
\left(\begin{array}{cc}
\theta_{1} & 0 \\
\theta_{2} & \theta_{1}
\end{array}\right)\binom{\eta_{1}}{\eta_{2}}=\binom{1}{0} .
$$

Inversion yields

$$
\binom{\theta_{1}}{\theta_{2}}^{-1} \stackrel{\text { def }}{=}\binom{\eta_{1}}{\eta_{2}}=\left(\begin{array}{ll}
\theta_{1} & 0 \\
\theta_{2} & \theta_{1}
\end{array}\right)^{\text {inv }}\binom{1}{0}=\frac{1}{\theta_{1}^{2}}\left(\begin{array}{ll}
\theta_{1} & 0 \\
-\theta_{2} & \theta_{1}
\end{array}\right)\binom{1}{0}=\binom{\frac{1}{\theta_{1}}}{-\frac{\theta_{2}}{\theta_{1}^{2}}} \stackrel{*}{=}\binom{\theta_{1}}{-\theta_{2}} .
$$

Note that this is well defined, since $\theta_{1} \neq 0$ for all $\theta \in \mathcal{G}_{1}$. The last step, indicated with a $*$, exploits the fact that $\theta_{1}^{2}=\langle\theta \mid \theta\rangle=1$ for all $\theta \in \mathcal{G}_{1}$.

(35)
 3. Fourier Transformation and Distribution Theory

Consider the generalized function f defining a tempered distribution $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$, given by

$$
f(x, y)=u(x, y) \delta(y-m x),
$$

in which δ denotes the one-dimensional Dirac function, $u: \mathbb{R}^{2} \rightarrow \mathbb{C}$ is a given function with well-defined Fourier transform $\hat{u}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, and $m \in \mathbb{R}$ is a parameter. That is, for $\phi \in \mathscr{S}\left(\mathbb{R}^{2}\right)$,

$$
T_{f}(\phi)=\iint_{\mathbb{R}^{2}} f(x, y) \phi(x, y) d x d y
$$

Note that the support of f (the part of the (x, y)-domain where $f(x, y)$ may not vanish) is effectively the line given by $\ell: y=m x$. For this reason we define the function $u_{m}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
u_{m}(x)=u(x, m x) .
$$

In this problem the two-dimensional Fourier transform is defined as

$$
\hat{f}(\omega, \nu)=\iint_{\mathbb{R}^{2}} e^{-i \omega x-i \nu y} f(x, y) d x d y
$$

(10) a. Show that $\hat{f}(\omega, \nu)=\hat{u}_{m}(\omega+m \nu)$.

Working out the definitions we have
$\hat{f}(\omega, \nu)=\iint_{\mathbb{R}^{2}} e^{-i \omega x-i \nu y} f(x, y) d x d y=\iint_{\mathbb{R}^{2}} e^{-i \omega x-i \nu y} u(x, y) \delta(y-m x) d x d y=\int_{\mathbb{R}} e^{-i(\omega+m \nu) x} u_{m}(x) d x=\hat{u}_{m}(\omega+m \nu)$.
$\left(2 \frac{1}{2}\right)$ b1. Sketch the graph of ℓ in the (x, y)-plane.

The graph of ℓ in the (x, y)-plane is a straight line through the origin with an inclination angle α relative to the x-axis, such that $m=\tan \alpha$.
b2. Express the angle α by which ℓ intersects the x-axis in terms of the parameter m.

Recall b1: $\alpha=\arctan m$.
$\left(2 \frac{1}{2}\right) \quad$ b3. Sketch the family of lines in the (ω, ν)-plane on which $\hat{f}(\omega, \nu)$ assumes constant values.

For constant $c \in \mathbb{C}$ and generic function \hat{f} we have $\hat{f}(\omega, \nu)=c$, i.e. $\hat{u}_{m}(\omega+m \nu)=c$, along lines in the (ω, ν)-plane for which $\omega+m \nu=k$ for any constant $k \in \mathbb{R}$.
$\left(2 \frac{1}{2}\right)$ b4. Under which angle does the normal vector to this family intersect the ω-axis?

The common normal of the family of lines given in b3 is, up to an arbitrary non-zero constant, equal to ($1, m$), so that it makes the same angle $\alpha=\arctan m$ with the ω-axis as the line ℓ does with the x-axis.

Below we consider the case

$$
u(x, y)=A e^{-\left(x^{2}+y^{2}\right)}
$$

for some amplitude $A>0$. In the following problem you may use the following standard integral, valid for all $\xi, \eta \in \mathbb{R}$:

$$
\int_{-\infty}^{\infty} e^{-(\xi+i \eta)^{2}} d \xi=\sqrt{\pi}
$$

(10)
c. Compute $\hat{u}_{m}(\omega)$.

Plugging in the definition of the function u_{m} we obtain

$$
\hat{u}_{m}(\omega)=\int_{\mathbb{R}} e^{-i \omega x} u_{m}(x) d x=A \int_{\mathbb{R}} e^{-i \omega x} e^{-\left(1+m^{2}\right) x^{2}} d x
$$

The r.h.s. can be rewritten as

$$
A e^{-\frac{\omega^{2}}{4\left(1+m^{2}\right)}} \int_{\mathbb{R}} e^{-\left(x \sqrt{1+m^{2}}+\frac{i \omega}{2 \sqrt{1+m^{2}}}\right)^{2}} d x \stackrel{*}{=} \frac{A}{\sqrt{1+m^{2}}} e^{-\frac{\omega^{2}}{4\left(1+m^{2}\right)}} \int_{\mathbb{R}} e^{-\left(\xi+\frac{i \omega}{2 \sqrt{1+m^{2}}}\right)^{2}} d \xi \stackrel{\star}{=} \frac{A \sqrt{\pi}}{\sqrt{1+m^{2}}} e^{-\frac{\omega^{2}}{4\left(1+m^{2}\right)}}
$$

In $*$ we have substituted $x \sqrt{1+m^{2}}=\xi$, in \star we have applied the given standard integral.
(5) d. Suppose the function u_{m} is normalized such that $\int_{-\infty}^{\infty} u_{m}(x) d x=1$. Determine A.

This means that $\hat{u}_{m}(0)=1$, so $A=\sqrt{1+m^{2}} / \sqrt{\pi}$.

