REEXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Wednesday April 11, 2012. Time: 09h00-12h00. Place: MA 1.46.

Read this first!

- Write your name and student ID on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes is allowed. The use of problem companion ("opgaven- en tentamenbundel"), calculator, laptop, or any other equipment, is not allowed.
- You may provide your answers in Dutch or English.
- Feel free to ask questions on linguistic matters or if you suspect an erroneous problem formulation.

Good luck!

1. Inner Product Space

Consider the set

$$
V=\left\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f \in C(\mathbb{R}) \text { and } f(x)=\left\langle k_{x} \mid f\right\rangle\right\}
$$

in which $k_{x} \in V$ is a particular element of V for every $x \in \mathbb{R}$ and $\langle\mid\rangle: C(\mathbb{R}) \times C(\mathbb{R}) \rightarrow \mathbb{C}$ is a complex inner product on $C(\mathbb{R})$. We take it for granted that $C(\mathbb{R})$ is a complex inner product space given the usual definitions of function addition and complex scalar multiplication.
a. Show that the function k_{x} has the following properties:
a3. $k_{x}(x) \geq 0$ for all $x \in \mathbb{R}$.
The following diagrams are abstract representations for $k_{x}(y)$ and $\overline{k_{y}(x)}$:

a4. Explain what it means to say that these diagrams are mutually consistent.
(10) b. Show that V is a complex vector space.

Hint: Use the linear subspace theorem.

Below we take $\langle\mid\rangle: C(\mathbb{R}) \times C(\mathbb{R}) \rightarrow \mathbb{C}$ to be the standard complex inner product on $C(\mathbb{R})$.
c. Explain what this means by giving the explicit formula for $\langle f \mid g\rangle$.
d. Explain and prove the following diagrammatic equality:

[^0]2. Algebra (Exam March 8, 2005, Problem 1)

In this problem we consider the set $\mathcal{G} \stackrel{\text { def }}{=} \mathbb{R}^{2}$ endowed with certain internal and external operators. We identify an element $\theta \in \mathcal{G}$ with its column representation in \mathbb{R}^{2} :

$$
\left.\theta \stackrel{\text { def }}{=}\binom{\theta_{1}}{\theta_{2}} \quad \text { in which } \theta_{1}, \theta_{2} \in \mathbb{R} \text { (the "components of } \theta "\right) .
$$

To begin with we interpret \mathcal{G} as the linear space over \mathbb{R} by introducing vector addition and scalar multiplication, in the usual way. The vector sum of $\eta, \theta \in \mathcal{G}$ is written as $\eta+\theta$, and the scalar multiple of $\theta \in \mathcal{G}$ and $\lambda \in \mathbb{R}$ as $\lambda \theta$.
(5) a. Explain what is meant by "the usual way" by indicating explicitly how $\eta+\theta$ and $\lambda \theta$ are defined in terms of their components.

We furthermore introduce an algebraic operation, which we shall refer to as "multiplication". The "product" of $\eta, \theta \in \mathcal{G}$ is simply written as $\eta \theta$, for which we agree that, in terms of components,

$$
\eta \theta \stackrel{\text { def }}{=}\binom{\eta_{1} \theta_{1}}{\eta_{1} \theta_{2}+\eta_{2} \theta_{1}} \in \mathcal{G} .
$$

(5) b. Prove that \mathcal{G}, endowed with the aforementioned multiplication operation, constitutes an algebra. Proceed as follows (without proof we take it for granted that \mathcal{G} is a linear space, cf. part a):
b1. Prove that $\forall \eta, \theta, \gamma \in \mathcal{G} \quad(\eta \theta) \gamma=\eta(\theta \gamma)$.
b2. Prove that $\forall \eta, \theta, \gamma \in \mathcal{G} \quad \eta(\theta+\gamma)=(\eta \theta)+(\eta \gamma)$.
b3. Prove that $\forall \eta, \theta, \gamma \in \mathcal{G} \quad(\eta+\theta) \gamma=(\eta \gamma)+(\theta \gamma)$.
b4. Prove that $\forall \eta, \theta \in \mathcal{G}, \lambda \in \mathbb{R} \quad \lambda(\eta \theta)=(\lambda \eta) \theta=\eta(\lambda \theta)$.
(5) c. Show that, moreover, there exists a unit element $1 \in \mathcal{G}$ (not to be confused with the number $1 \in \mathbb{R}$), and give its column representation in \mathbb{R}^{2}.
(5) d. Is multiplication on \mathcal{G} commutative? If so, prove, if not, give a counter example.

We now consider the subset $\mathcal{G}_{0} \subset \mathcal{G}$, defined by $\mathcal{G}_{0}=\left\{\theta \in \mathcal{G} \mid \theta^{2}=0\right\}$. (With θ^{2} we mean $\theta \theta$.)
(5) e. Give an explicit characterization of \mathcal{G}_{0} by indicating what the column representation in \mathbb{R}^{2} of an arbitrary element $\theta \in \mathcal{G}_{0}$ looks like.

Finally we introduce on \mathcal{G} a degenerate, non-negative, symmetric, real valued, bilinear form. For $\eta, \theta \in \mathcal{G}$ this is indicated by $\langle\eta \mid \theta\rangle \in \mathbb{R}$. In terms of the components of η and θ we define this as follows:

$$
\langle\eta \mid \theta\rangle=\eta_{1} \theta_{1}
$$

Caveat: The adjective "degenerate" indicates that $\langle\mid\rangle$ does not define an inner product.
(5) f. Explain the adjective "degenerate" by explaining why $\langle\mid\rangle$ does not define an inner product.

We now consider the subset $\mathcal{G}_{1} \subset \mathcal{G}$, defined by $\mathcal{G}_{1}=\{\theta \in \mathcal{G} \mid\langle\theta \mid \theta\rangle=1\}$.
(5) g. Prove that \mathcal{G}_{1} constitutes a group with respect to multiplication. Proceed as follows:
g1. Show that, if $\eta, \theta \in \mathcal{G}_{1}$ then $\eta \theta \in \mathcal{G}_{1}$ ("closure").
g2. Show that $\forall \eta, \theta, \gamma \in \mathcal{G}_{1} \quad(\eta \theta) \gamma=\eta(\theta \gamma)$ ("associativity").
g3. Show that the unit element of part c satisfies $1 \in \mathcal{G}_{1}$.
g4. Show that, given $\theta \in \mathcal{G}_{1}$, there exists an inverse $\theta^{-1} \in \mathcal{G}_{1}$, such that $\theta \theta^{-1}=\theta^{-1} \theta=1 \in \mathcal{G}_{1}$. Give the column representation of θ^{-1} in \mathbb{R}^{2} in terms of the components of θ.
(35) 3. Fourier Transformation and Distribution Theory

Consider the generalized function f defining a tempered distribution $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$, given by

$$
f(x, y)=u(x, y) \delta(y-m x)
$$

in which δ denotes the one-dimensional Dirac function, $u: \mathbb{R}^{2} \rightarrow \mathbb{C}$ is a given function with well-defined Fourier transform $\hat{u}: \mathbb{R}^{2} \rightarrow \mathbb{C}$, and $m \in \mathbb{R}$ is a parameter. That is, for $\phi \in \mathscr{S}\left(\mathbb{R}^{2}\right)$,

$$
T_{f}(\phi)=\iint_{\mathbb{R}^{2}} f(x, y) \phi(x, y) d x d y
$$

Note that the support of f (the part of the (x, y)-domain where $f(x, y)$ may not vanish) is effectively the line given by $\ell: y=m x$. For this reason we define the function $u_{m}: \mathbb{R} \rightarrow \mathbb{C}$ by

$$
u_{m}(x)=u(x, m x)
$$

In this problem the two-dimensional Fourier transform is defined as

$$
\hat{f}(\omega, \nu)=\iint_{\mathbb{R}^{2}} e^{-i \omega x-i \nu y} f(x, y) d x d y
$$

(10) a. Show that $\hat{f}(\omega, \nu)=\hat{u}_{m}(\omega+m \nu)$.
$\left(2 \frac{1}{2}\right)$ b1. Sketch the graph of ℓ in the (x, y)-plane.
$\left(2 \frac{1}{2}\right) \quad$ b2. Express the angle α by which ℓ intersects the x-axis in terms of the parameter m.
b3. Sketch the family of lines in the (ω, ν)-plane on which $\hat{f}(\omega, \nu)$ assumes constant values.
b4. Under which angle does the normal vector to this family intersect the ω-axis?
Below we consider the case

$$
u(x, y)=A e^{-\left(x^{2}+y^{2}\right)}
$$

for some amplitude $A>0$. In the following problem you may use the following standard integral, valid for all $\xi, \eta \in \mathbb{R}$:

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-(\xi+i \eta)^{2}} d \xi=\sqrt{\pi} \tag{10}
\end{equation*}
$$

c. Compute $\hat{u}_{m}(\omega)$.
(5) d. Suppose the function u_{m} is normalized such that $\int_{-\infty}^{\infty} u_{m}(x) d x=1$. Determine A.

[^0]: Hint: The unlabeled central dot on the r.h.s. represents an integration dummy.

