
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday June 15, 2009. Time: 14h00–17h00. Place: HG 10.01 C.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student identification
number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

• You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

1. Linear Algebra & Group Theory(35)

Definition. Let V be a vector space over R. A real inner product is a nondegenerate positive
definite symmetric bilinear mapping 〈 | 〉 : V ×V −→ R satisfying the following properties. For
all u, v, w ∈ V and λ, µ ∈ R we have

• 〈λu + µv|w〉 = λ〈u|w〉+ µ〈v|w〉,
• 〈u|λv + µw〉 = λ〈u|v〉+ µ〈u|w〉,
• 〈u|v〉 = 〈v|u〉,
• 〈u|u〉 > 0 for all u 6= 0.

a. Show that either the first or the second criterion is redundant.(21
2)

The second property follows from the first and third properties: 〈u|λv + µw〉 3
= 〈λv + µw|u〉 1

= λ〈v|u〉 + µ〈w|u〉 3
=

λ〈u|v〉+ µ〈u|w〉.

Below we consider the following binary map:

〈 | 〉 : R2 × R2 → R : (v, w) 7→ 〈v|w〉 def= v1w1 − v2w2 . (∗)

b. Verify whether 〈 | 〉 defines a real inner product. To this end, indicate explicitly which of(71
2)

the relevant criteria are satisfied, respectively violated. Support your claims by proofs.

The first three properties hold, the last one does not. Note that (λv + µw)i = λvi + µwi for each component i = 1, 2.

Linearity w.r.t. left hand side (first property): 〈u|λv + µw〉 def
= u1(λv + µw)1 − u2(λv + µw)2 = λ(u1v1 − u2v2) +

µ(u1w1 − u2w2)
def
= λ〈u|w〉 + µ〈v|w〉. Linearity w.r.t. right hand side (second property) may be proven in a similar
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fashion, but according to a does not require a proof if first and third properties hold. Symmetry (third property):

〈u|v〉 def
= u1v1 − u2v2 = v1u1 − v2u2

def
= 〈v|u〉. Positivity (fourth property) does not hold, for 〈u|u〉 def

= u2
1 − u2

2 < 0 if

|u1| > |u2|.

The functions cosh, sinh : R→ R are defined as follows:

cosh t
def=

et + e−t

2
respectively sinh t

def=
et − e−t

2
.

The notation cosh2 t and sinh2 t is equivalent to (cosh t)2, resp. (sinh t)2.

c. Show that cosh2 t− sinh2 t = 1 for all t ∈ R.(2 1
2)

Using the definition and straightforward algebraic simplifications we obtain cosh2 t−sinh2 t
def
=

(
et+e−t

2

)2−
(

et−e−t

2

)2
=

1
4

(
e2t + 2 + e−2t − e2t + 2− e−2t

)
= 1.

Definition. An abelian group is a collection G together with an internal operation

◦ : G×G −→ G : (x, y) 7→ x ◦ y ,

such that

• the operation is associative, i.e. (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ G,

• there exists an identity element e ∈ G such that x ◦ e = e ◦ x = x for all x ∈ G,

• for each x ∈ G there exists an inverse element x−1 ∈ G such that x−1 ◦ x = x ◦ x−1 = e,

• for all x, y ∈ G we have x ◦ y = y ◦ x.

Consider the 1-parameter linear mapping At : R2 → R2 : v 7→ At(v) = A(t)v, with matrix
representation

A(t) =
(

cosh t sinh t
sinh t cosh t

)
.

d. Show that the set G={At | t ∈ R} constitutes an abelian group under operator composition.(71
2)

(Hint: First show that As ◦At = As+t.)

The hint provides the key to prove this conjecture. Let us assume that As ◦ At = As+t does indeed hold for all s, t ∈ R.

Associativity (first property) then follows from the observation that (As ◦At)◦Au = As+t ◦Au = A(s+t)+u
∗
= As+(t+u) =

As ◦At+u = As ◦(At ◦Au), where in ∗ we have used associativity of ordinary addition on R. The identity element is clearly

e
def
= A0, for A0(v) = A(0)v = Iv = v for all v ∈ R2. Given s ∈ R, we have As ◦A−s = As−s = A0 = A−s+s = A−s ◦As,

so A−s is the inverse element of As. Commutativity is also inherited from that of ordinary addition (identity ∗), since

As ◦At = As+t
∗
= At+s = At ◦As. Conclusion: G constitutes an abelian group.

It remains to prove the conjecture given in the hint: (As ◦ At)(v)
def
= As(At(v))

def
= A(s)(A(t)v)

∗
= (A(s)A(t))v

?
=

A(s + t))v. Here the identity ∗ follows from associativity of matrix multiplication, and ? from algebraic simplification of
the matrix product A(s)A(t),

A(s)A(t) =

(
cosh s cosh t + sinh s sinh t cosh s sinh t + sinh s cosh t
cosh s sinh t + sinh s cosh t cosh s cosh t + sinh s sinh t

)
,
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using the observations that cosh s cosh t + sinh s sinh t = cosh(s + t) and cosh s sinh t + sinh s cosh t = sinh(s + t).

e. Show that 〈At(v)|At(w)〉 = 〈v|w〉 for all v, w ∈ R2.(5)

We have

〈At(v)|At(w)〉 = 〈A(t)v|A(t)w〉 = 〈
(

cosh t sinh t
sinh t cosh t

) (
v1

v2

)
|
(

cosh t sinh t
sinh t cosh t

) (
w1

w2

)
〉

= (cosh tv1 + sinh tv2)(cosh tw1 + sinh tw2)− (sinh tv1 + cosh tv2)(sinh tw1 + cosh tw2)

= (cosh2 t− sinh2 t)v1w1 + (sinh2 t− cosh2 t)v2w2
c
= v1w1 − v2w2 = 〈v|w〉

for all v, w ∈ R2 and t ∈ R.

Definition. A norm is a nondegenerate positive definite mapping ‖ ‖ : V −→ R such that for
all v, w ∈ V , λ ∈ R,

• ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0,

• ‖λ v‖ = |λ| ‖v‖,
• ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Below we introduce the unary operator ‖ ‖ : R2 → R as follows:

‖v‖2 def= 〈v|v〉 for all v ∈ R2.

Here the bracket operator 〈 | 〉 is the one defined in the equation marked by (∗) above.

f. Verify whether ‖ ‖ defines a norm. To this end, indicate explicitly which of the three criteria(71
2)

are satisfied, respectively violated. Support your claims by proofs.

First and last properties are violated, since ‖v‖2 def
= 〈v|v〉 = v2

1−v2
2 < 0 if |v1| < |v2|, in which case ‖v‖ 6∈ R, rendering the

inequalities meaningless. The second property seems to hold for all v ∈ R2, since if λ ∈ R, ‖λv‖2 = 〈λv|λv〉 ∗= λ2〈v|v〉 =

λ2‖v‖2, whence ‖λv‖ = |λ|‖v‖. However, this is only the case if we admit cases in which ‖v‖ is imaginary, which is

precluded by the prescribed prototype ‖ ‖ : R2 −→ R. Identity ∗ makes use of bilinearity of the bracket operator, recall b.

Consider the subsets

R2
−

def=
{
v ∈ R2 | ‖v‖2 < 0

}
, R2

0
def=

{
v ∈ R2 | ‖v‖2 = 0

}
, R2

+
def=

{
v ∈ R2 | ‖v‖2 > 0

}
.

g. Show that the subsets R2−, R2
0 and R2

+ are invariant under At, i.e. if(21
2)

At(R2
±,0)

def=
{
At(v) | v ∈ R2

±,0

}
,

show that At(R2
±,0) = R2

±,0 for all t ∈ R.

We have already proven that 〈At(v)|At(w)〉 = 〈v|w〉 in e. By taking v = w this implies that ‖At(v)‖2 = ‖v‖2 for all

v ∈ R2 and t ∈ R, whence the result follows.
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♣

2. Algebra(25)

Definition. An algebra A over the field R is a linear space enriched with a multiplication
operator. Denoting the infix multiplication operator by ◦, we have, for all a, b, c ∈ A:

(a ◦ b) ◦ c
1= a ◦ (b ◦ c) ,

a ◦ (b + c) 2= a ◦ b + a ◦ c ,

(a + b) ◦ c
3= a ◦ c + b ◦ c .

Moreover, scalar multiplication must be such that for all a, b ∈ A and λ ∈ R,

λ(a ◦ b) 4= (λa) ◦ b
4= a ◦ (λb) .

If, in addition,
a ◦ b

5= b ◦ a ,

for all a, b ∈ A, then A is called a commutative algebra. If, in addition to properties 1–4, there
exists an identity element e ∈ A such that

e ◦ a
6= a ◦ e

6= a ,

for all a ∈ A, then A is called an algebra with identity. If, in addition to properties 1–4 and 6,
every nonzero element a ∈ A has an inverse a−1 ∈ A such that

a ◦ a−1 7= a−1 ◦ a
7= e ,

then A is called a regular algebra. A singular algebra is one in which we cannot invert all
nonzero elements.

We now consider the 2-dimensional linear space

D = span
{(

0 1
0 0

)
,

(
1 0
0 1

)}
,

equipped with the usual operators for matrix addition and scalar multiplication, and extend it
with the usual matrix multiplication operator.

a. Show that D is closed with respect to matrix multiplication.(21
2)

It suffices to compute the following products to show closure:

(
0 1
0 0

) (
1 0
0 1

)
=

(
1 0
0 1

) (
0 1
0 0

)
=

(
0 1
0 0

)
,

(
0 1
0 0

) (
0 1
0 0

)
=

(
0 0
0 0

)
,

(
1 0
0 1

) (
1 0
0 1

)
=

(
1 0
0 1

)
,

all of which are within D. Alternatively we may multiply two arbitrary elements from D to verify closure:

(
b a
0 b

) (
d c
0 d

)
=

(
bd bc + ad
0 bd

)
∈ D .

b. Show that D is a commutative algebra over the field R (i.e. satisfies identities labeled 1–5).(121
2)

Closure has been proven in a.
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• Property 1 (associativity): matrix multiplication in general is associative, which thus carries over to D. A formal
proof: let A, B, C be square matrices with components aij , bij , respectively cij , then we have for all i, j = 1, 2, 3,

((AB)C)ij =
n∑

k=1

(AB)ik Ckj =
n∑

k=1

n∑

`=1

(Ai`B`k) Ckj =
n∑

`=1

Ai`

n∑

k=1

(
B`kCkj

)
=

n∑

`=1

Ai` (BC)`j = (A(BC))ij .

Conclusion: (AB)C = A(BC) for all square matrices A, B, C and therefore for all A, B, C ∈ D.

• Properties 2–3 (distributivity): matrix multiplication in general is distributive relative to matrix addition, which
thus carries over to D. A formal proof: let A, B, C be square matrices with components aij , bij , respectively cij ,
then we have for all i, j = 1, 2, 3,

(A(B + C))ij =
n∑

k=1

Aik(B+C)kj =
n∑

k=1

Aik(Bkj+Ckj) =
n∑

k=1

AikBkj+
n∑

k=1

AikCkj = (AB)ij+(AC)ij = (AB + AC)ij .

Conclusion: A(B + C) = AB + AC for all square matrices A, B, C and therefore for all A, B, C ∈ D. The proof of
property 3 is analogous.

• Property 4 (distributivity): matrix multiplication in general is distributive relative to scalar multiplication, which
thus carries over to D. A formal proof: let A, B be square matrices with components aij , bij , respectively, and
λ ∈ R, then

(λ(AB))ij
∗
= λ(AB)ij

?
= λ

n∑

k=1

AikBkj =
n∑

k=1

λAikBkj
∗
=

n∑

k=1

(λA)ikBkj
?
= ((λA)B)ij ,

for all i, j = 1, . . . , n, whence λ(AB) = (λA)B. Here ∗ and ? pertain to the definition of scalar multiplication of a
matrix with a scalar, and that of the matrix product, respectively. The proof of λ(AB) = A(λB) is similar.

• For general n×n matrices we do not have AB = BA, but in this particular case of subset D we do. Proof: Consider
all possible mutual (ordered) products of the two basis matrices. The identity matrix commutes with any matrix,
and any matrix obviously commutes with itself, whence if Ea ∈ D denotes one of the given basis matrices (a = 1, 2),
then EaEb = EbEa for all a, b = 1, 2. This commutativity of basis carries over to all linear combinations, i.e. to
all of D. Alternatively, recalling a result from a., the product

(
b a
0 b

) (
d c
0 d

)
=

(
bd bc + ad
0 bd

)
=

(
d c
0 d

) (
b a
0 b

)
,

in which the last equality follows from the observation that the product is symmetric w.r.t. interchange b ↔ d and
a ↔ c.

c. Show that D has an identity element (identity 6).(21
2)

It is given that

(
1 0
0 1

)
∈ D.

d. Show that D is a singular algebra, and identify those elements which cannot be inverted.(21
2)

Since det

(
0 1
0 0

)
= 0 there apparently exists at least one nontrivial non-invertible element in D. In general we have

(
b a
0 b

)−1

=
1

b2

(
b −a
0 b

)
∈ D

exists iff b 6= 0.

e. Show that for a, b, c, d ∈ R, c 6= 0, division must be defined on D as follows:(5)
(

a b
0 a

)

(
c d
0 c

) =




a

c

bc− ad

c2

0
a

c


 .
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(Hint: How should one define “division” in terms of multiplication?)

First of all, since multiplication is commutative, we have AB−1 = B−1A for all A, B ∈ D, so we may define

A

B

def
= AB−1 or

A

B

def
= B−1A

as we please, without risk of confusion. Let

A
def
=

(
a b
0 b

)
and B

def
=

(
c d
0 c

)
.

For B to be invertible we must require det B = c2 6= 0, so c 6= 0. In that case we have

A

B

def
= B−1A =

1

c2

(
c bc− ad
0 c

) (
a b
0 b

)
=




a

c

cb− ad

c2

0
a

c


 .

♣

3. Distribution Theory(20)

We consider the function f : R→ R : x 7→ f(x) given by

f(x) =
{

0 x < 0
e−x x ≥ 0

and its associated regular tempered distribution Tf : S (R) → R : φ 7→ Tf (φ) =
∫ ∞

−∞
f(x) φ(x) dx.

a. Show that f satisfies the o.d.e. (ordinary differential equation) u′+u = 0 almost everywhere,(10)
and explain what the annotation “almost everywhere” means in this case.

For x < 0 it is clear that f is differentiable (with f(x) = f ′(x) = 0) and trivially satisfies the o.d.e. For x > 0 f is

likewise differentiable, and we have f ′(x) = −e−x = −f(x), which shows that also on this subdomain f satisfies the o.d.e.

u′ + u = 0. However, at x = 0 f is not differentiable, so this point needs to be excluded. This explains what is meant by

the statement that f satisfies the o.d.e. “almost everywhere”.

b. Show that, in distributional sense, Tf satisfies the o.d.e. u′+u = δ, in which the right hand(10)
side denotes the Dirac point distribution.

We have, respectively,

Tf (φ) =

∫ ∞

−∞
f(x) φ(x) dx =

∫ ∞

0
e−x φ(x) dx ,

and

T ′f (φ)
∗
= −Tf (φ′) = −

∫ ∞

−∞
f(x) φ′(x) dx = −

∫ ∞

0
e−x φ′(x) dx

?
= −e−x φ(x)

∣∣∞
0
−

∫ ∞

0
e−x φ(x) dx = φ(0)− Tf (φ) .

The equality marked by ∗ holds by definition of distributional differentiation, the one marked by ? follows by partial
integration. Using the definition of the Dirac point distribution, δ(φ) = φ(0), we may rewrite the result as

T ′f (φ) = δ(φ)− Tf (φ) ,
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which shows that Tf satisfies the inhomogeneous o.d.e. u′ + u = δ in distributional sense. Notice that no restrictions on

the domain of definition need to be imposed, and that the result is consistent with the “classical” result under a, since

δ(x) = 0 for x 6= 0.

♣

4. Fourier Analysis(20)

For each n ∈ N we define the function fn : R→ R as follows:

fn(x) def=
1
xn

.

We employ the following Fourier convention:

f̂(ω) =
∫ ∞

−∞
f(x) e−iωx dx with, as a result, f(x) =

1
2π

∫ ∞

−∞
f̂(ω) eiωx dω .

Without proof we state the Fourier transform of the function f1, viz. f̂1(ω) = −i π sgn (ω).
Here, sgn (ω) = −1 for ω < 0, sgn (0) = 0, and sgn (ω) = +1 for ω > 0.

The convolution product of two functions f and g is defined as

(f ∗ g)(x) def=
∫ ∞

−∞
f(y) g(x− y) dy ,

provided the integral on the right hand side exists. If this is not the case, but the functions
f and g do permit Fourier transformation, we employ the following implicit definition for the
convolution product (F(u) is here synonymous for û):

F(f ∗ g) = F(f)F(g) .

a. Show that the function f̂n is purely imaginary for odd n ∈ N, and real for even n ∈ N.(5)
(Hint: Use the (anti-)symmetry property fn(x) = (−1)n fn(−x) for all x ∈ R.)

If z = a + bi ∈ C we write the complex conjugate as z∗ = a− bi, a, b ∈ R. For ω ∈ R arbitrary we have

f̂n(ω)
def
=

∫ ∞

−∞
fn(x) e−iωx dx

hint
= (−1)n

∫ ∞

−∞
fn(−x) e−iωx dx

∗
= (−1)n

∫ ∞

−∞
fn(y) eiωy dy

?
= (−1)n

(∫ ∞

−∞
fn(y) e−iωy dy

)∗

= (−1)n f̂∗n(ω) .

In ∗ substitution of variables, x = −y, has been used. In ? the fact that fn(y) ∈ R for all y ∈ R has been used, as

well as the fact that
∫
Ω f∗(x) dx =

(∫
Ω f(x) dx

)∗
for any integration domein Ω ⊂ R. Conclusion: For even n we have

f̂n(ω) = f̂∗n(ω), i.e. f̂n(ω) ∈ R. For odd n we have f̂n(ω) = −f̂∗n(ω), i.e. f̂n(ω) ∈ iR, i.e. purely imaginary.

b. Prove the following recursions for the functions fn, respectively f̂n:

b1. fn+1(x) = − 1
n

f ′n(x), n ∈ N.(21
2)

Straightforward differentiation yields f ′n(x)
def
=

[
x−n

]′
= −n x−n−1 def

= −n fn+1(x), from which the conjecture follows.
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b2. f̂n+1(ω) = − 1
n

iω f̂n(ω), n ∈ N.(21
2)

We have F(fn+1)(ω)
∗
= − 1

n
F(f ′n)(ω)

?
= − 1

n
iωF(fn)(ω). In ∗ problem b1 has been used together with linearity of Fourier

transformation. In ? the following property has been used: F(f ′)(ω) = iωF(f)(ω).

c. Determine f̂n(ω) for each n ∈ N, given that f̂1(ω) = −i π sgn (ω).(5)

Claim (induction hypothesis): f̂n(ω) =
π

i

(−iω)n−1

(n− 1)!
sgn(ω). Proof by induction: For n = 1 this result agrees with the

one given. Furthermore, f̂n+1(ω)
b2
= − 1

n
iω f̂n(ω)

∗
= − 1

n
iω

π

i

(−iω)n−1

(n− 1)!
sgn(ω) =

π

i

(−iω)n

n!
sgn(ω). In ∗ the induction

hypothesis has been invoked for f̂n(ω).

d. Prove: f̂n ∗ f̂m = 2π f̂n+m for all n,m ∈ N.(5)

It is evident that fn fm = fn+m (?), as for all x ∈ R we have fn(x) fm(x) = x−n x−m = x−(n+m) = fn+m(x).

Consequently: f̂n ∗ f̂m = F(fn) ∗ F(fm)
∗
= 2πF(fn fm)

?
= 2πF(fn+m) = 2π f̂n+m. In ∗ we have used the fact that for

two functions u1 en u2 we have, provided left and right hand sides exist, F(u1 u2) =
1

2π
F(u1) ∗F(u2). In ? we have used

the first observation above.

THE END
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