EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday June 15, 2009. Time: 14h00-17h00. Place: HG 10.01 C.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is *not* allowed.
- You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

(35) 1. LINEAR ALGEBRA & GROUP THEORY

Definition. Let V be a vector space over \mathbb{R} . A *real inner product* is a nondegenerate positive definite symmetric bilinear mapping $\langle | \rangle : V \times V \longrightarrow \mathbb{R}$ satisfying the following properties. For all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$ we have

- $\langle \lambda u + \mu v | w \rangle = \lambda \langle u | w \rangle + \mu \langle v | w \rangle,$
- $\langle u|\lambda v + \mu w \rangle = \lambda \langle u|v \rangle + \mu \langle u|w \rangle$,
- $\langle u|v\rangle = \langle v|u\rangle,$
- $\langle u|u\rangle > 0$ for all $u \neq 0$.
- $(2\frac{1}{2})$ a. Show that either the first or the second criterion is redundant.

Below we consider the following binary map:

$$\langle | \rangle : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} : (v, w) \mapsto \langle v | w \rangle \stackrel{\text{def}}{=} v_1 w_1 - v_2 w_2 .$$
 (*)

 $(7\frac{1}{2})$ **b.** Verify whether $\langle | \rangle$ defines a real inner product. To this end, indicate explicitly which of the relevant criteria are satisfied, respectively violated. Support your claims by proofs.

The functions $\cosh, \sinh : \mathbb{R} \to \mathbb{R}$ are defined as follows:

$$\cosh t \stackrel{\text{def}}{=} \frac{e^t + e^{-t}}{2} \quad \text{respectively} \quad \sinh t \stackrel{\text{def}}{=} \frac{e^t - e^{-t}}{2}.$$

The notation $\cosh^2 t$ and $\sinh^2 t$ is equivalent to $(\cosh t)^2$, resp. $(\sinh t)^2$.

 $(2\frac{1}{2})$ c. Show that $\cosh^2 t - \sinh^2 t = 1$ for all $t \in \mathbb{R}$.

Definition. An *abelian group* is a collection G together with an internal operation

$$\circ: G \times G \longrightarrow G: (x, y) \mapsto x \circ y \,,$$

such that

- the operation is associative, i.e. $(x \circ y) \circ z = x \circ (y \circ z)$ for all $x, y, z \in G$,
- there exists an identity element $e \in G$ such that $x \circ e = e \circ x = x$ for all $x \in G$,
- for each $x \in G$ there exists an inverse element $x^{-1} \in G$ such that $x^{-1} \circ x = x \circ x^{-1} = e$,
- for all $x, y \in G$ we have $x \circ y = y \circ x$.

Consider the 1-parameter linear mapping $A_t : \mathbb{R}^2 \to \mathbb{R}^2 : v \mapsto A_t(v) = \mathbf{A}(t)v$, with matrix representation

$$\mathbf{A}(t) = \left(\begin{array}{c} \cosh t & \sinh t \\ \sinh t & \cosh t \end{array}\right) \,.$$

(7¹/₂) **d.** Show that the set $G = \{A_t \mid t \in \mathbb{R}\}$ constitutes an abelian group under operator composition. (*Hint:* First show that $A_s \circ A_t = A_{s+t}$.)

(5) **e.** Show that $\langle A_t(v) | A_t(w) \rangle = \langle v | w \rangle$ for all $v, w \in \mathbb{R}^2$.

Definition. A norm is a nondegenerate positive definite mapping $\| \| : V \longrightarrow \mathbb{R}$ such that for all $v, w \in V, \lambda \in \mathbb{R}$,

- $||v|| \ge 0$ and ||v|| = 0 if and only if v = 0,
- $\|\lambda v\| = |\lambda| \|v\|$,
- $||v + w|| \le ||v|| + ||w||.$

Below we introduce the unary operator $\| \| : \mathbb{R}^2 \to \mathbb{R}$ as follows:

$$||v||^2 \stackrel{\text{def}}{=} \langle v|v \rangle$$
 for all $v \in \mathbb{R}^2$

Here the bracket operator $\langle | \rangle$ is the one defined in the equation marked by (*) above.

 $(7\frac{1}{2})$ **f.** Verify whether $\| \|$ defines a norm. To this end, indicate explicitly which of the three criteria are satisfied, respectively violated. Support your claims by proofs.

Consider the subsets

$$\mathbb{R}^2_{-} \stackrel{\text{def}}{=} \left\{ v \in \mathbb{R}^2 \mid \|v\|^2 < 0 \right\} , \quad \mathbb{R}^2_0 \stackrel{\text{def}}{=} \left\{ v \in \mathbb{R}^2 \mid \|v\|^2 = 0 \right\} , \quad \mathbb{R}^2_+ \stackrel{\text{def}}{=} \left\{ v \in \mathbb{R}^2 \mid \|v\|^2 > 0 \right\} .$$

 $(2\frac{1}{2})$ g. Show that the subsets \mathbb{R}^2_- , \mathbb{R}^2_0 and \mathbb{R}^2_+ are invariant under A_t , i.e. if

$$A_t(\mathbb{R}^2_{\pm,0}) \stackrel{\text{def}}{=} \left\{ A_t(v) \mid v \in \mathbb{R}^2_{\pm,0} \right\}$$

show that $A_t(\mathbb{R}^2_{\pm,0}) = \mathbb{R}^2_{\pm,0}$ for all $t \in \mathbb{R}$.

÷

(25) 2. Algebra

Definition. An algebra \mathcal{A} over the field \mathbb{R} is a linear space enriched with a multiplication operator. Denoting the infix multiplication operator by \circ , we have, for all $a, b, c \in \mathcal{A}$:

$$(a \circ b) \circ c \stackrel{1}{=} a \circ (b \circ c),$$

$$a \circ (b + c) \stackrel{2}{=} a \circ b + a \circ c,$$

$$(a + b) \circ c \stackrel{3}{=} a \circ c + b \circ c.$$

Moreover, scalar multiplication must be such that for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{R}$,

$$\lambda(a \circ b) \stackrel{4}{=} (\lambda a) \circ b \stackrel{4}{=} a \circ (\lambda b).$$

If, in addition,

$$a \circ b \stackrel{5}{=} b \circ a$$
,

for all $a, b \in A$, then A is called a commutative algebra. If, in addition to properties 1–4, there exists an identity element $e \in A$ such that

$$e \circ a \stackrel{6}{=} a \circ e \stackrel{6}{=} a$$
,

for all $a \in \mathcal{A}$, then \mathcal{A} is called an algebra with identity. If, in addition to properties 1–4 and 6, every nonzero element $a \in \mathcal{A}$ has an inverse $a^{-1} \in \mathcal{A}$ such that

$$a \circ a^{-1} \stackrel{7}{=} a^{-1} \circ a \stackrel{7}{=} e \,,$$

then \mathcal{A} is called a regular algebra. A singular algebra is one in which we cannot invert all nonzero elements.

We now consider the 2-dimensional linear space

$$\mathbb{D} = \operatorname{span} \left\{ \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right) , \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \right\} ,$$

equipped with the usual operators for matrix addition and scalar multiplication, and extend it with the usual matrix multiplication operator.

- $(2\frac{1}{2})$ a. Show that \mathbb{D} is closed with respect to matrix multiplication.
- $(12\frac{1}{2})$ **b.** Show that \mathbb{D} is a commutative algebra over the field \mathbb{R} (i.e. satisfies identities labeled 1–5).

- $(2\frac{1}{2})$ c. Show that \mathbb{D} has an identity element (identity 6).
- $(2\frac{1}{2})$ d. Show that \mathbb{D} is a singular algebra, and identify those elements which cannot be inverted.
- (5) **e.** Show that for $a, b, c, d \in \mathbb{R}$, $c \neq 0$, division must be defined on \mathbb{D} as follows:

$$\frac{\left(\begin{array}{cc}a&b\\0&a\end{array}\right)}{\left(\begin{array}{cc}c&d\\0&c\end{array}\right)} = \left(\begin{array}{cc}\frac{a}{c}&\frac{bc-ad}{c^2}\\\\0&\frac{a}{c}\end{array}\right)$$

(*Hint:* How should one define "division" in terms of multiplication?)

÷

(20) 3. Distribution Theory

We consider the function $f : \mathbb{R} \to \mathbb{R} : x \mapsto f(x)$ given by

$$f(x) = \begin{cases} 0 & x < 0\\ e^{-x} & x \ge 0 \end{cases}$$

and its associated regular tempered distribution $T_f: \mathscr{S}(\mathbb{R}) \to \mathbb{R}: \phi \mapsto T_f(\phi) = \int_{-\infty}^{\infty} f(x) \phi(x) dx.$

- (10) **a.** Show that f satisfies the o.d.e. (ordinary differential equation) u' + u = 0 almost everywhere, and explain what the annotation "almost everywhere" means in this case.
- (10) **b.** Show that, in distributional sense, T_f satisfies the o.d.e. $u' + u = \delta$, in which the right hand side denotes the Dirac point distribution.

*

(20) 4. FOURIER ANALYSIS

For each $n \in \mathbb{N}$ we define the function $f_n : \mathbb{R} \to \mathbb{R}$ as follows:

$$f_n(x) \stackrel{\text{def}}{=} \frac{1}{x^n}$$

We employ the following Fourier convention:

$$\widehat{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$
 with, as a result, $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i\omega x} d\omega$.

Without proof we state the Fourier transform of the function f_1 , viz. $\hat{f}_1(\omega) = -i\pi \operatorname{sgn}(\omega)$. Here, $\operatorname{sgn}(\omega) = -1$ for $\omega < 0$, $\operatorname{sgn}(0) = 0$, and $\operatorname{sgn}(\omega) = +1$ for $\omega > 0$. The convolution product of two functions f and g is defined as

$$(f * g)(x) \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} f(y) g(x - y) dy,$$

provided the integral on the right hand side exists. If this is not the case, but the functions f and g do permit Fourier transformation, we employ the following *implicit definition* for the convolution product ($\mathcal{F}(u)$ is here synonymous for \hat{u}):

$$\mathcal{F}(f * g) = \mathcal{F}(f) \,\mathcal{F}(g) \,.$$

(5) **a.** Show that the function \widehat{f}_n is purely imaginary for odd $n \in \mathbb{N}$, and real for even $n \in \mathbb{N}$. (*Hint:* Use the (anti-)symmetry property $f_n(x) = (-1)^n f_n(-x)$ for all $x \in \mathbb{R}$.)

b. Prove the following recursions for the functions f_n , respectively \hat{f}_n :

- $(2\frac{1}{2})$ **b1.** $f_{n+1}(x) = -\frac{1}{n} f'_n(x), n \in \mathbb{N}.$
- $(2\frac{1}{2})$ **b2.** $\widehat{f}_{n+1}(\omega) = -\frac{1}{n} i\omega \widehat{f}_n(\omega), n \in \mathbb{N}.$
- (5) **c.** Determine $\widehat{f}_n(\omega)$ for each $n \in \mathbb{N}$, given that $\widehat{f}_1(\omega) = -i\pi \operatorname{sgn}(\omega)$.
- (5) **d.** Prove: $\widehat{f}_n * \widehat{f}_m = 2\pi \widehat{f}_{n+m}$ for all $n, m \in \mathbb{N}$.

THE END