EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday June 15, 2009. Time: 14h00-17h00. Place: HG 10.01 C.

Read this first!

- Use a separate sheet of paper for each problem. Write your name and student identification number on each paper.
- The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, "opgaven- en tentamenbundel", is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

1. Linear Algebra \& Group Theory

Definition. Let V be a vector space over \mathbb{R}. A real inner product is a nondegenerate positive definite symmetric bilinear mapping $\langle\mid\rangle: V \times V \longrightarrow \mathbb{R}$ satisfying the following properties. For all $u, v, w \in V$ and $\lambda, \mu \in \mathbb{R}$ we have

- $\langle\lambda u+\mu v \mid w\rangle=\lambda\langle u \mid w\rangle+\mu\langle v \mid w\rangle$,
- $\langle u \mid \lambda v+\mu w\rangle=\lambda\langle u \mid v\rangle+\mu\langle u \mid w\rangle$,
- $\langle u \mid v\rangle=\langle v \mid u\rangle$,
- $\langle u \mid u\rangle>0$ for all $u \neq 0$.
$\left(2 \frac{1}{2}\right)$ a. Show that either the first or the second criterion is redundant.

Below we consider the following binary map:

$$
\begin{equation*}
\langle\mid\rangle: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}:(v, w) \mapsto\langle v \mid w\rangle \stackrel{\text { def }}{=} v_{1} w_{1}-v_{2} w_{2} \tag{*}
\end{equation*}
$$

$\left(7 \frac{1}{2}\right)$ b. Verify whether $\langle\mid\rangle$ defines a real inner product. To this end, indicate explicitly which of the relevant criteria are satisfied, respectively violated. Support your claims by proofs.

The functions cosh, $\sinh : \mathbb{R} \rightarrow \mathbb{R}$ are defined as follows:

$$
\cosh t \stackrel{\text { def }}{=} \frac{e^{t}+e^{-t}}{2} \quad \text { respectively } \quad \sinh t \stackrel{\text { def }}{=} \frac{e^{t}-e^{-t}}{2} .
$$

The notation $\cosh ^{2} t$ and $\sinh ^{2} t$ is equivalent to $(\cosh t)^{2}$, resp. $(\sinh t)^{2}$.
$\left(2 \frac{1}{2}\right)$ c. Show that $\cosh ^{2} t-\sinh ^{2} t=1$ for all $t \in \mathbb{R}$.
Definition. An abelian group is a collection G together with an internal operation

$$
\circ: G \times G \longrightarrow G:(x, y) \mapsto x \circ y,
$$

such that

- the operation is associative, i.e. $(x \circ y) \circ z=x \circ(y \circ z)$ for all $x, y, z \in G$,
- there exists an identity element $e \in G$ such that $x \circ e=e \circ x=x$ for all $x \in G$,
- for each $x \in G$ there exists an inverse element $x^{-1} \in G$ such that $x^{-1} \circ x=x \circ x^{-1}=e$,
- for all $x, y \in G$ we have $x \circ y=y \circ x$.

Consider the 1-parameter linear mapping $A_{t}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}: v \mapsto A_{t}(v)=\mathbf{A}(t) v$, with matrix representation

$$
\mathbf{A}(t)=\left(\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right) .
$$

(7 $\frac{1}{2}$) d. Show that the set $G=\left\{A_{t} \mid t \in \mathbb{R}\right\}$ constitutes an abelian group under operator composition. (Hint: First show that $A_{s} \circ A_{t}=A_{s+t}$.)
(5) e. Show that $\left\langle A_{t}(v) \mid A_{t}(w)\right\rangle=\langle v \mid w\rangle$ for all $v, w \in \mathbb{R}^{2}$.

Definition. A norm is a nondegenerate positive definite mapping $\|\|: V \longrightarrow \mathbb{R}$ such that for all $v, w \in V, \lambda \in \mathbb{R}$,

- $\|v\| \geq 0$ and $\|v\|=0$ if and only if $v=0$,
- $\|\lambda v\|=|\lambda|\|v\|$,
- $\|v+w\| \leq\|v\|+\|w\|$.

Below we introduce the unary operator $\left\|\|: \mathbb{R}^{2} \rightarrow \mathbb{R}\right.$ as follows:

$$
\|v\|^{2} \xlongequal{\text { def }}\langle v \mid v\rangle \quad \text { for all } v \in \mathbb{R}^{2} .
$$

Here the bracket operator $\langle\mid\rangle$ is the one defined in the equation marked by $(*)$ above.
(7 $\frac{1}{2}$) f. Verify whether $\|\|$ defines a norm. To this end, indicate explicitly which of the three criteria are satisfied, respectively violated. Support your claims by proofs.

Consider the subsets

$$
\mathbb{R}_{-}^{2} \stackrel{\text { def }}{=}\left\{v \in \mathbb{R}^{2} \mid\|v\|^{2}<0\right\}, \quad \mathbb{R}_{0}^{2} \stackrel{\text { def }}{=}\left\{v \in \mathbb{R}^{2} \mid\|v\|^{2}=0\right\}, \quad \mathbb{R}_{+}^{2} \stackrel{\text { def }}{=}\left\{v \in \mathbb{R}^{2} \mid\|v\|^{2}>0\right\} .
$$

$\left(2 \frac{1}{2}\right) \quad \mathrm{g}$. Show that the subsets $\mathbb{R}_{-}^{2}, \mathbb{R}_{0}^{2}$ and \mathbb{R}_{+}^{2} are invariant under A_{t}, i.e. if

$$
A_{t}\left(\mathbb{R}_{ \pm, 0}^{2}\right) \stackrel{\text { def }}{=}\left\{A_{t}(v) \mid v \in \mathbb{R}_{ \pm, 0}^{2}\right\}
$$

show that $A_{t}\left(\mathbb{R}_{ \pm, 0}^{2}\right)=\mathbb{R}_{ \pm, 0}^{2}$ for all $t \in \mathbb{R}$.

2. Algebra

Definition. An algebra \mathcal{A} over the field \mathbb{R} is a linear space enriched with a multiplication operator. Denoting the infix multiplication operator by \circ, we have, for all $a, b, c \in \mathcal{A}$:

$$
\begin{aligned}
(a \circ b) \circ c & \stackrel{1}{=} a \circ(b \circ c), \\
a \circ(b+c) & \stackrel{2}{=} a \circ b+a \circ c, \\
(a+b) \circ c & \stackrel{3}{=} a \circ c+b \circ c .
\end{aligned}
$$

Moreover, scalar multiplication must be such that for all $a, b \in \mathcal{A}$ and $\lambda \in \mathbb{R}$,

$$
\lambda(a \circ b) \stackrel{4}{=}(\lambda a) \circ b \stackrel{4}{=} a \circ(\lambda b) .
$$

If, in addition,

$$
a \circ b \stackrel{5}{=} b \circ a
$$

for all $a, b \in \mathcal{A}$, then \mathcal{A} is called a commutative algebra. If, in addition to properties $1-4$, there exists an identity element $e \in \mathcal{A}$ such that

$$
e \circ a \stackrel{6}{=} a \circ e \stackrel{6}{=} a
$$

for all $a \in \mathcal{A}$, then \mathcal{A} is called an algebra with identity. If, in addition to properties $1-4$ and 6 , every nonzero element $a \in \mathcal{A}$ has an inverse $a^{-1} \in \mathcal{A}$ such that

$$
a \circ a^{-1} \stackrel{7}{=} a^{-1} \circ a \stackrel{7}{=} e
$$

then \mathcal{A} is called a regular algebra. A singular algebra is one in which we cannot invert all nonzero elements.

We now consider the 2-dimensional linear space

$$
\mathbb{D}=\operatorname{span}\left\{\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

equipped with the usual operators for matrix addition and scalar multiplication, and extend it with the usual matrix multiplication operator.
$\left(2 \frac{1}{2}\right)$ a. Show that \mathbb{D} is closed with respect to matrix multiplication.
$\left(12 \frac{1}{2}\right)$
b. Show that \mathbb{D} is a commutative algebra over the field \mathbb{R} (i.e. satisfies identities labeled $1-5$).
$\left(2 \frac{1}{2}\right)$ c. Show that \mathbb{D} has an identity element (identity 6).
$\left(2 \frac{1}{2}\right)$ d. Show that \mathbb{D} is a singular algebra, and identify those elements which cannot be inverted.
(5) e. Show that for $a, b, c, d \in \mathbb{R}, c \neq 0$, division must be defined on \mathbb{D} as follows:

$$
\frac{\left(\begin{array}{cc}
a & b \\
0 & a
\end{array}\right)}{\left(\begin{array}{cc}
c & d \\
0 & c
\end{array}\right)}=\left(\begin{array}{cc}
\frac{a}{c} & \frac{b c-a d}{c^{2}} \\
0 & \frac{a}{c}
\end{array}\right) .
$$

(Hint: How should one define "division" in terms of multiplication?)

3. Distribution Theory

We consider the function $f: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto f(x)$ given by

$$
f(x)=\left\{\begin{array}{cc}
0 & x<0 \\
e^{-x} & x \geq 0
\end{array}\right.
$$

and its associated regular tempered distribution $T_{f}: \mathscr{S}(\mathbb{R}) \rightarrow \mathbb{R}: \phi \mapsto T_{f}(\phi)=\int_{-\infty}^{\infty} f(x) \phi(x) d x$.
(10) a. Show that f satisfies the o.d.e. (ordinary differential equation) $u^{\prime}+u=0$ almost everywhere, and explain what the annotation "almost everywhere" means in this case.
(10) b. Show that, in distributional sense, T_{f} satisfies the o.d.e. $u^{\prime}+u=\delta$, in which the right hand side denotes the Dirac point distribution.

4. Fourier Analysis

For each $n \in \mathbb{N}$ we define the function $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ as follows:

$$
f_{n}(x) \stackrel{\text { def }}{=} \frac{1}{x^{n}} .
$$

We employ the following Fourier convention:

$$
\widehat{f}(\omega)=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x \quad \text { with, as a result, } \quad f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \widehat{f}(\omega) e^{i \omega x} d \omega
$$

Without proof we state the Fourier transform of the function f_{1}, viz. $\widehat{f}_{1}(\omega)=-i \pi \operatorname{sgn}(\omega)$. Here, $\operatorname{sgn}(\omega)=-1$ for $\omega<0, \operatorname{sgn}(0)=0$, and $\operatorname{sgn}(\omega)=+1$ for $\omega>0$.

The convolution product of two functions f and g is defined as

$$
(f * g)(x) \stackrel{\text { def }}{=} \int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

provided the integral on the right hand side exists. If this is not the case, but the functions f and g do permit Fourier transformation, we employ the following implicit definition for the convolution product $(\mathcal{F}(u)$ is here synonymous for $\widehat{u})$:

$$
\mathcal{F}(f * g)=\mathcal{F}(f) \mathcal{F}(g)
$$

(5) a. Show that the function \widehat{f}_{n} is purely imaginary for odd $n \in \mathbb{N}$, and real for even $n \in \mathbb{N}$. (Hint: Use the (anti-)symmetry property $f_{n}(x)=(-1)^{n} f_{n}(-x)$ for all $x \in \mathbb{R}$.)
b. Prove the following recursions for the functions f_{n}, respectively \widehat{f}_{n} :
$\left(2 \frac{1}{2}\right)$ b1. $f_{n+1}(x)=-\frac{1}{n} f_{n}^{\prime}(x), n \in \mathbb{N}$.
$\left(2 \frac{1}{2}\right)$ b2. $\widehat{f}_{n+1}(\omega)=-\frac{1}{n} i \omega \widehat{f}_{n}(\omega), n \in \mathbb{N}$.
(5) c. Determine $\widehat{f}_{n}(\omega)$ for each $n \in \mathbb{N}$, given that $\widehat{f}_{1}(\omega)=-i \pi \operatorname{sgn}(\omega)$.
(5) d. Prove: $\widehat{f}_{n} * \widehat{f}_{m}=2 \pi \widehat{f}_{n+m}$ for all $n, m \in \mathbb{N}$.

THE END

(c) 2009 Luc Florack, Eindhoven University of Technology

