
EXAMINATION MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Monday June 15, 2009. Time: 14h00–17h00. Place: HG 10.01 C.

Read this first!

• Use a separate sheet of paper for each problem. Write your name and student identification
number on each paper.

• The exam consists of 4 problems. The maximum credit for each item is indicated in the margin.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the problem
companion, “opgaven- en tentamenbundel”, is not allowed.

• You may provide your answers in Dutch or (preferably) in English.

GOOD LUCK!

1. Linear Algebra & Group Theory(35)

Definition. Let V be a vector space over R. A real inner product is a nondegenerate positive
definite symmetric bilinear mapping 〈 | 〉 : V ×V −→ R satisfying the following properties. For
all u, v, w ∈ V and λ, µ ∈ R we have

• 〈λu + µv|w〉 = λ〈u|w〉+ µ〈v|w〉,
• 〈u|λv + µw〉 = λ〈u|v〉+ µ〈u|w〉,
• 〈u|v〉 = 〈v|u〉,
• 〈u|u〉 > 0 for all u 6= 0.

a. Show that either the first or the second criterion is redundant.(21
2)

Below we consider the following binary map:

〈 | 〉 : R2 × R2 → R : (v, w) 7→ 〈v|w〉 def= v1w1 − v2w2 . (∗)

b. Verify whether 〈 | 〉 defines a real inner product. To this end, indicate explicitly which of(71
2)

the relevant criteria are satisfied, respectively violated. Support your claims by proofs.

The functions cosh, sinh : R→ R are defined as follows:

cosh t
def=

et + e−t

2
respectively sinh t

def=
et − e−t

2
.

The notation cosh2 t and sinh2 t is equivalent to (cosh t)2, resp. (sinh t)2.
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c. Show that cosh2 t− sinh2 t = 1 for all t ∈ R.(2 1
2)

Definition. An abelian group is a collection G together with an internal operation

◦ : G×G −→ G : (x, y) 7→ x ◦ y ,

such that

• the operation is associative, i.e. (x ◦ y) ◦ z = x ◦ (y ◦ z) for all x, y, z ∈ G,

• there exists an identity element e ∈ G such that x ◦ e = e ◦ x = x for all x ∈ G,

• for each x ∈ G there exists an inverse element x−1 ∈ G such that x−1 ◦ x = x ◦ x−1 = e,

• for all x, y ∈ G we have x ◦ y = y ◦ x.

Consider the 1-parameter linear mapping At : R2 → R2 : v 7→ At(v) = A(t)v, with matrix
representation

A(t) =
(

cosh t sinh t
sinh t cosh t

)
.

d. Show that the set G={At | t ∈ R} constitutes an abelian group under operator composition.(71
2)

(Hint: First show that As ◦At = As+t.)

e. Show that 〈At(v)|At(w)〉 = 〈v|w〉 for all v, w ∈ R2.(5)

Definition. A norm is a nondegenerate positive definite mapping ‖ ‖ : V −→ R such that for
all v, w ∈ V , λ ∈ R,

• ‖v‖ ≥ 0 and ‖v‖ = 0 if and only if v = 0,

• ‖λ v‖ = |λ| ‖v‖,
• ‖v + w‖ ≤ ‖v‖+ ‖w‖.

Below we introduce the unary operator ‖ ‖ : R2 → R as follows:

‖v‖2 def= 〈v|v〉 for all v ∈ R2.

Here the bracket operator 〈 | 〉 is the one defined in the equation marked by (∗) above.

f. Verify whether ‖ ‖ defines a norm. To this end, indicate explicitly which of the three criteria(71
2)

are satisfied, respectively violated. Support your claims by proofs.

Consider the subsets

R2
−

def=
{
v ∈ R2 | ‖v‖2 < 0

}
, R2

0
def=

{
v ∈ R2 | ‖v‖2 = 0

}
, R2

+
def=

{
v ∈ R2 | ‖v‖2 > 0

}
.
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g. Show that the subsets R2−, R2
0 and R2

+ are invariant under At, i.e. if(21
2)

At(R2
±,0)

def=
{
At(v) | v ∈ R2

±,0

}
,

show that At(R2
±,0) = R2

±,0 for all t ∈ R.

♣

2. Algebra(25)

Definition. An algebra A over the field R is a linear space enriched with a multiplication
operator. Denoting the infix multiplication operator by ◦, we have, for all a, b, c ∈ A:

(a ◦ b) ◦ c
1= a ◦ (b ◦ c) ,

a ◦ (b + c) 2= a ◦ b + a ◦ c ,

(a + b) ◦ c
3= a ◦ c + b ◦ c .

Moreover, scalar multiplication must be such that for all a, b ∈ A and λ ∈ R,

λ(a ◦ b) 4= (λa) ◦ b
4= a ◦ (λb) .

If, in addition,
a ◦ b

5= b ◦ a ,

for all a, b ∈ A, then A is called a commutative algebra. If, in addition to properties 1–4, there
exists an identity element e ∈ A such that

e ◦ a
6= a ◦ e

6= a ,

for all a ∈ A, then A is called an algebra with identity. If, in addition to properties 1–4 and 6,
every nonzero element a ∈ A has an inverse a−1 ∈ A such that

a ◦ a−1 7= a−1 ◦ a
7= e ,

then A is called a regular algebra. A singular algebra is one in which we cannot invert all
nonzero elements.

We now consider the 2-dimensional linear space

D = span
{(

0 1
0 0

)
,

(
1 0
0 1

)}
,

equipped with the usual operators for matrix addition and scalar multiplication, and extend it
with the usual matrix multiplication operator.

a. Show that D is closed with respect to matrix multiplication.(21
2)

b. Show that D is a commutative algebra over the field R (i.e. satisfies identities labeled 1–5).(121
2)
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c. Show that D has an identity element (identity 6).(21
2)

d. Show that D is a singular algebra, and identify those elements which cannot be inverted.(21
2)

e. Show that for a, b, c, d ∈ R, c 6= 0, division must be defined on D as follows:(5)
(

a b
0 a

)

(
c d
0 c

) =




a

c

bc− ad

c2

0
a

c


 .

(Hint: How should one define “division” in terms of multiplication?)

♣

3. Distribution Theory(20)

We consider the function f : R→ R : x 7→ f(x) given by

f(x) =
{

0 x < 0
e−x x ≥ 0

and its associated regular tempered distribution Tf : S (R) → R : φ 7→ Tf (φ) =
∫ ∞

−∞
f(x) φ(x) dx.

a. Show that f satisfies the o.d.e. (ordinary differential equation) u′+u = 0 almost everywhere,(10)
and explain what the annotation “almost everywhere” means in this case.

b. Show that, in distributional sense, Tf satisfies the o.d.e. u′+u = δ, in which the right hand(10)
side denotes the Dirac point distribution.

♣

4. Fourier Analysis(20)

For each n ∈ N we define the function fn : R→ R as follows:

fn(x) def=
1
xn

.

We employ the following Fourier convention:

f̂(ω) =
∫ ∞

−∞
f(x) e−iωx dx with, as a result, f(x) =

1
2π

∫ ∞

−∞
f̂(ω) eiωx dω .

Without proof we state the Fourier transform of the function f1, viz. f̂1(ω) = −i π sgn (ω).
Here, sgn (ω) = −1 for ω < 0, sgn (0) = 0, and sgn (ω) = +1 for ω > 0.
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The convolution product of two functions f and g is defined as

(f ∗ g)(x) def=
∫ ∞

−∞
f(y) g(x− y) dy ,

provided the integral on the right hand side exists. If this is not the case, but the functions
f and g do permit Fourier transformation, we employ the following implicit definition for the
convolution product (F(u) is here synonymous for û):

F(f ∗ g) = F(f)F(g) .

a. Show that the function f̂n is purely imaginary for odd n ∈ N, and real for even n ∈ N.(5)
(Hint: Use the (anti-)symmetry property fn(x) = (−1)n fn(−x) for all x ∈ R.)

b. Prove the following recursions for the functions fn, respectively f̂n:

b1. fn+1(x) = − 1
n

f ′n(x), n ∈ N.(21
2)

b2. f̂n+1(ω) = − 1
n

iω f̂n(ω), n ∈ N.(21
2)

c. Determine f̂n(ω) for each n ∈ N, given that f̂1(ω) = −i π sgn (ω).(5)

d. Prove: f̂n ∗ f̂m = 2π f̂n+m for all n,m ∈ N.(5)

THE END
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