EXAMINATION: MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020. Date: Thursday April 8th, 2010. Time: 14h00 – 17h00. Place: AUD 13

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems on 5 pages. The maximum credit for each item is indicated in parenthesis.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, opgaven- en tentamenbundel, is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

Good Luck!

1 Linear Algebra

Consider the set $\mathcal{C}^{\infty}(H^1)$ of \mathbb{C} -valued, infinitely differentiable functions on a unit half-cirlce H^1 . We parametrize functions $f \in \mathcal{C}^{\infty}(H^1)$ either by an angular coordinate $\theta \in [0, \pi]$ or by the corresponding projection onto the z-axis, being $z = \cos \theta$ (see Figure 1). We equip the function space $\mathcal{C}^{\infty}(H^1)$ with the inner product

$$\langle f|g\rangle := \int_{0}^{\pi} f^{*}(\theta) g(\theta) d\theta , \text{ for } f, g \in \mathcal{C}^{\infty}(H^{1}) , \qquad (1)$$

with f^* denoting the complex-conjugate of f.The corresponding measure is given by $\|f\| := \sqrt{\langle f|f\rangle}$. For our calculations we utilize the orthogonal basis functions

$$b_n: \theta \mapsto \cos(n\theta), \text{ for } n \in \{0, 1, 2, \dots\}.$$

Figure 1: Half-cirlce H^1 parameterized by angle $\theta \in [0, \pi]$ or projection $z = \cos \theta \in [-1, 1]$.

(4) a) With $e^{i\theta} = \cos\theta + i\sin\theta$, proof the trigonometric identity

$$\cos^2\theta + \sin^2\theta = 1 \quad \text{for } \theta \in \mathbb{R}.$$

Note, that $\cos^2\theta$ stands for $(\cos\theta)^2$ and $\sin^2\theta$ stands for $(\sin\theta)^2$. **Solution:** Solving $e^{i\theta} = \cos\theta + i\sin\theta$ for sin and cos, we obtain $\cos^2\theta = \frac{1}{4} \left(e^{i\theta} + e^{-i\theta}\right)^2 = \frac{1}{4} \left(e^{2i\theta} + 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right) = \frac{1}{4} \left(e^{2i\theta} + 2 + e^{-2i\theta}\right)$ and $\sin^2\theta = -\frac{1}{4} \left(e^{i\theta} - e^{-i\theta}\right)^2 = -\frac{1}{4} \left(e^{2i\theta} - 2e^{i\theta}e^{-i\theta} + e^{-2i\theta}\right) = -\frac{1}{4} \left(e^{2i\theta} - 2 + e^{-2i\theta}\right)$ Hence, $\cos^2\theta + \sin^2\theta = \frac{1}{4}(2+2) = 1$.

(4) **b)** Proof Moivre's formula

$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$

for $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$. Solution: $(\cos \theta + i \sin \theta)^n = (e^{i\theta})^n = e^{i n \theta} = \cos(n \theta) + i \sin(n \theta)$.

(6) c) Show, that the inner product

$$\langle f|g\rangle := \int_{-1}^{1} f^*(\arccos z) g(\arccos z) \frac{dz}{\sqrt{1-z^2}} , \text{ for } f,g \in \mathcal{C}^{\infty}(H^1) .$$

$$\tag{2}$$

is equivalent to the inner product in equation (1). Note, that \arccos is the inverse function of cos. Hence, $z = \cos \theta$, $\theta = \arccos z$, and $\theta = \arccos(\cos \theta)$ for all $\theta \in [0, \pi]$.

Solution: One has to perform in equation (1) the substitution $z = \cos \theta$ to obtain equation (2). Steps in that substitution are $dz = -\sin \theta \, d\theta$ and $-\sin \theta = -\sqrt{1 - \cos^2 \theta} = -\sqrt{1 - z^2}$ for $\theta \in [0, \pi]$, so that $d\theta = -\frac{dz}{\sqrt{1 - z^2}}$. Note, that the boundaries $\cos \theta = 1$ and $\cos \pi = -1$ of the integration need to be flipped, inducing another overall minus sign.

$$\int_{0}^{\pi} f^{*}(\theta) g(\theta) d\theta = -\int_{1}^{-1} f^{*}(\arccos z) g(\arccos z) \frac{dz}{\sqrt{1-z^{2}}} = -\int_{-1}^{1} f^{*}(\arccos z) g(\arccos z) \frac{dz}{\sqrt{1-z^{2}}}.$$

(5) d) Express the first three basis functions b_n with n = 0, 1, 2 as polynomials $T_n(z)$ of z. Remark: the polynomials $T_n(z)$ are the so-called Chebyshev polynomials of the first kind. Solution:

$$\begin{array}{rcl} T_0(z) &=& b_0(\arccos z) \;=\; 1, \\ T_1(z) &=& b_1(\arccos z) \;=\; \cos\left(\arccos z\right) \;=\; z, \\ T_2(z) &=& b_2(\arccos z) \;=\; \cos\left(2\arccos z\right) \;=\; \cos^2\left(\arccos z\right) - \sin^2\left(\arccos z\right) \\ &=& z^2 - \left(1 - \cos^2\left(\arccos z\right)\right) \;=\; 2\,z^2 - 1 \end{array}$$

(5) e) Verify the orthogonality relation for all $n = \{0, 1, 2, 3, ...\}$.

$$\int_{-1}^{1} T_n^*(z) T_m(z) \frac{dz}{\sqrt{1-z^2}} = \begin{cases} \pi & , n=m=0\\ \frac{\pi}{2} & , n=m\neq 0 \\ 0 & , n\neq m \end{cases}$$
(3)

Tip: Remember the relation between $T_n(z)$ and $b_n(\theta)$.

 $\begin{array}{lll} \textbf{Solution:} & \int_{-1}^{1} T_{n}^{*}(z) \, T_{m}(z) \, \frac{dz}{\sqrt{1-z^{2}}} &= \int_{0}^{\pi} b_{n}^{*}(\theta) b_{m}(\theta) \, d\theta = \int_{0}^{\pi} \cos\left(n\,\theta\right) \, \cos\left(m\,\theta\right) \, d\theta. \\ \text{We now utilize the trigonometric identity (see script) } \cos\left(\alpha\pm\beta\right) &= \cos(\alpha)\cos(\beta)\pm\sin(\alpha)\sin(\beta). \\ \text{Adding the two versions of this identity results in } \cos\left(\alpha-\beta\right) + \cos\left(\alpha+\beta\right) &= 2\cos(\alpha)\cos(\beta). \\ \text{Substituting for } \alpha \mapsto n\,\theta \text{ and } \beta \mapsto m\,\theta \text{ we have } \cos(m\,\theta)\cos(n\,\theta) = \frac{1}{2}(\cos((n-m)\,\theta) + \cos((m+n)\,\theta)). \\ \text{we return to the integral.} \quad \int_{0}^{\pi} \cos\left(n\,\theta\right)\cos\left(m\,\theta\right) \, d\theta = \frac{1}{2}\left(\int_{0}^{\pi} \cos\left((n-m)\,\theta\right) \, d\theta + \int_{0}^{\pi} \cos\left((m+n)\,\theta\right) \, d\theta \right). \\ \text{Consider the case } n &= m = 0: \ \frac{1}{2}\left(\int_{0}^{\pi} 1 \, d\theta + \int_{0}^{\pi} \cos(2n\,\theta) \, d\theta\right) &= \pi. \\ \text{Consider the case } n &= m \neq 0: \ \frac{1}{2}\left(\int_{0}^{\pi} 1 \, d\theta + \int_{0}^{\pi} \cos(2n\,\theta) \, d\theta\right) = \frac{1}{2}(\pi+0) &= \frac{\pi}{2}. \\ \text{Consider the case } n &\neq m: \ \frac{1}{2}\left(\frac{\sin(\pi(m-n))}{m-n} + \frac{\sin(\pi(m+n))}{m+n}\right) &= \ \frac{1}{2}(0+0) = 0. \end{array}$

(6) \mathbf{f}) Derive the recursion relation

$$T_n(z) = 2 z T_{n-1}(z) - T_{n-2}(z)$$

for all $n \in \{2, 3, 4, \dots\}$.

Tip: First proof the trigonometric relation $\cos(n \ \theta) = 2 \cos(\theta) \cos((n-1) \ \theta) - \cos((n-2) \ \theta)$. Solution:

$$2 \cos(\theta) \cos((n-1)\theta) - \cos((n-2)\theta) = (e^{i\theta} + e^{-i\theta}) \frac{1}{2} (e^{i(n-1)\theta} + e^{-i(n-1)\theta}) - \frac{1}{2} (e^{i(n-2)\theta} + e^{-i(n-2)\theta}) = \frac{1}{2} (e^{i(n)\theta} + e^{-i(n)\theta}) + \frac{1}{2} (e^{i(n-2)\theta} + e^{-i(n-2)\theta}) - \frac{1}{2} (e^{i(n-2)\theta} + e^{-i(n-2)\theta}) = \frac{1}{2} (e^{i(n)\theta} + e^{-i(n)\theta}) = \cos(n\theta)$$

Substituting $\cos(q \theta)$ by $T_q(z)$ and $T_1(z)$ by z, one obtains the recursion.

(5) g) Determine the expansion of function $v: z \mapsto \sqrt{1-z^2}$ in the orthonormal basis

$$\begin{pmatrix} 1\\0\\0\\0\\0\\\vdots \end{pmatrix} = \frac{1}{\sqrt{\pi}} T_0 , \begin{pmatrix} 0\\1\\0\\0\\0\\\vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_1 , \begin{pmatrix} 0\\0\\1\\0\\0\\\vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_2 , \begin{pmatrix} 0\\0\\0\\1\\0\\\vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_3 , \begin{pmatrix} 0\\0\\0\\1\\0\\\vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_4 , \dots$$

Neglect all basis functions with $n \ge 5$.

Solution: All inner products below are integrals of simple polynomials.

$$v = \begin{pmatrix} \left\langle \sqrt{1-z^2} | \frac{1}{\sqrt{\pi}} T_0 \right\rangle \\ \left\langle \sqrt{1-z^2} | \sqrt{\frac{2}{\pi}} T_1 \right\rangle \\ \left\langle \sqrt{1-z^2} | \sqrt{\frac{2}{\pi}} T_2 \right\rangle \\ \left\langle \sqrt{1-z^2} | \sqrt{\frac{2}{\pi}} T_3 \right\rangle \\ \left\langle \sqrt{1-z^2} | \sqrt{\frac{2}{\pi}} T_4 \right\rangle \\ \vdots \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{\pi}} \\ 0 \\ -\frac{2}{3}\sqrt{\frac{2}{\pi}} \\ 0 \\ -\frac{2}{15}\sqrt{\frac{2}{\pi}} \\ \vdots \end{pmatrix}.$$

(5) h) Determine the matrix M of the linear transformation $f \mapsto z f$ in the orthonormal basis given above. Again, neglect all basis functions with $n \ge 5$.

Tip: Recall the result of problem 1(f).

Solution: Rewrite the recursion as $z T_{n-1}(z) = \frac{1}{2} (T_n(z) + T_{n-2}(z))$ and shift it in *n* by one: $z T_n(z) = \frac{1}{2} (T_{n+1}(z) + T_{n-1}(z))$ for $n \ge 1$. Furthermore, recall $z T_0(z) = T_1(z)$. Thus, one can write

$$M = \frac{1}{2} \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & \dots \\ \sqrt{2} & 0 & 1 & 0 & 0 & \dots \\ 0 & 1 & 0 & 1 & 0 & \dots \\ 0 & 0 & 1 & 0 & 1 & \dots \\ 0 & 0 & 0 & 1 & 0 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}.$$

(5) i) Prove or disprove, that the following definition is an inner product for function space $\mathcal{C}^{\infty}(H^1)$?

$$\langle f|g\rangle := \int_{0}^{\pi} \left(f^{*}(\theta) g(\theta) + 1\right) d\theta \; .$$

Solution: The proposed inner product is not linear! Example: $\langle f|2g \rangle \neq 2 \langle f|g \rangle$.

2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

$$\hat{f}(\omega) = \mathcal{F}[f](\omega) := \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

Inverse Fourier transformation:

$$f(x) = \mathcal{F}^{-1}\Big[\hat{f}\Big](x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\,\omega\,x} \,d\omega \,.$$

(4) a) Show that

$$\int_{-\infty}^{\infty} f(x) \, dx = \hat{f}(0) \; .$$

Solution: $\hat{f}(0) = \int_{-\infty}^{\infty} f(x) e^{-i0x} dx = \int_{-\infty}^{\infty} f(x) dx$, since $e^{-i0x} = 1$.

(5) b) Show that

$$\int_{-\infty}^{\infty} x f(x) dx = i \hat{f}'(0) .$$

Note, that $\hat{f}'(0)$ denotes the derivative of the Fourier transform \hat{f} at $\omega = 0$. **Solution:** $\hat{f}'(\omega) = \int_{-\infty}^{\infty} \partial_{\omega} f(x) e^{-i\omega x} dx = \int_{-\infty}^{\infty} f(x) (-ix) e^{-i\omega x} dx$. Hence, for $\omega = 0$ we $i\hat{f}'(0) = \int_{-\infty}^{\infty} f(x) i(-i) x e^{-i0x} dx = \int_{-\infty}^{\infty} f(x) x dx$.

(6) c) Show that for h(x) := f(ax) with $a \in \mathbb{R}$ and $a \neq 0$, the Fourier transform is given by

$$\hat{h}(\omega) = \frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right) \;.$$

Solution: The solution is given by a simple substitution z = a x. For a > 0 we have $\int_{-\infty}^{\infty} f(a x) e^{-i\omega x} dx = \int_{-\infty}^{\infty} f(z) e^{-i\frac{\omega z}{a}} \frac{dz}{a} = \frac{1}{a} \hat{f}\left(\frac{\omega}{a}\right)$. For a < 0 we have $\int_{-\infty}^{\infty} f(a x) e^{-i\omega x} dx = \int_{-\infty}^{\infty} f(z) e^{-i\frac{\omega z}{a}} \frac{dz}{-|a|} = \int_{-\infty}^{\infty} f(z) e^{-i\frac{\omega z}{a}} \frac{dz}{|a|} = \frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right)$. Hence, for both cases we can write: $\hat{h}(\omega) = \frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right)$

(6) d) Consider for $\lambda > 0$ the function

$$g: x \mapsto \begin{cases} 0 & \text{for } x < 0\\ \lambda e^{-\lambda x} & \text{for } x \ge 0 \end{cases}$$

Derive the Fourier transform \hat{g} .

Solution: $\hat{g}(\omega) = \int_{-\infty}^{\infty} g(x) e^{-i\omega x} dx = \int_{0}^{\infty} \lambda e^{-\lambda x} e^{-i\omega x} dx = \int_{0}^{\infty} \lambda e^{-(\lambda+i\omega) x} dx = -\frac{\lambda e^{-(\lambda+i\omega) x}}{\lambda+i\omega} \Big|_{0}^{\infty} = \frac{\lambda}{\lambda+i\omega}.$

Consider the two cardinal B-spline functions

$$B_0: x \mapsto \begin{cases} 1 & \text{for } -\frac{1}{2} \le x \le \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

and

$$B_1: x \mapsto \begin{cases} 1+x & \text{for } -1 \le x \le 0\\ 1-x & \text{for } 0 < x \le 1\\ 0 & \text{otherwise} \end{cases}$$

(5) e) Show, that $B_1 = B_0 * B_0$ where * denotes the convolution

$$(f * g)(x) := \int_{-\infty}^{\infty} f(y) g(x - y) dy$$

Solution: We need to distinguish three cases:

1. The two B_0 kernels do not have any overlap for |x| > 1. In this case, B_1 is 0. 2. For $-1 \le x < 0$, $B_0(x - y)$ is more left then $B_0(y)$. The two kernels overlap from $y = -\frac{1}{2}$ to $y = x + \frac{1}{2}$ so that $B_1(x) = \int_{-\frac{1}{2}}^{x+\frac{1}{2}} 1 \, dx = (x + \frac{1}{2} + \frac{1}{2}) = x + 1$. 3. For $0 \le x \le 1$, $B_0(x - y)$ is more right than $B_0(y)$. The two kernels overlap from $y = x - \frac{1}{2}$ to $y = \frac{1}{2}$ so that $B_1(x) = \int_{x-\frac{1}{2}}^{\frac{1}{2}} 1 \, dx = (\frac{1}{2} - (x - \frac{1}{2})) = 1 - x$.

(4) **f**) Determine the Fourier transform \hat{B}_0 .

Solution:
$$\hat{B}_0(\omega) = \int_{-\infty}^{\infty} B_0(x) e^{-i\omega x} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-i\omega x} dx = \frac{\sin(\omega/2)}{\omega/2}$$

(5) **g)** Determine the Fourier transform \hat{B}_1 . Recall the Fourier theorem $\mathcal{F}[f * g] = \mathcal{F}[f] \mathcal{F}[g]$. **Solution:** $\hat{B}_1(\omega) = \hat{B}_0^2(\omega) = \left(\frac{\sin(\omega/2)}{\omega/2}\right)^2$.

3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac δ -function, provides a tempered distribution with the following property.

$$T_{\delta}\left[\phi(x)
ight] \ := \ \int\limits_{-\infty}^{\infty} \delta(x) \, \phi(x) \, dx \ = \ \phi(0)$$

(6) **a)** Determine the result of the following distribution acting on an arbitrary Schwarz function $\phi \in \mathcal{S}(\mathbb{R})$.

$$\int_{-\infty}^{\infty} \delta(\sinh x) \,\,\phi(x) \,dx \,\,.$$

Recall, that $\sinh x = \frac{1}{2} (e^x - e^{-x})$, $\sinh' = \cosh$, and $\cosh^2 x - \sinh^2 x = 1$.

Solution: Perform a substitution $z = \sinh x$ with $dz = \cosh x \, dx$ and, thus, $dx = \frac{dz}{\sqrt{1+z^2}}$. So $\int_{-\infty}^{\infty} \delta(\sinh x) \, \phi(x) \, dx = \int_{-\infty}^{\infty} \delta(z) \, \phi(\operatorname{arcsinh}(z)) \, \frac{dz}{\sqrt{1+z^2}} = \phi(\operatorname{arcsinh}(0)) \, \sqrt{1+0^2} = \phi(0).$

(4) b) We consider the function $g: \mathbb{R} \to \mathbb{R}$ in problem 2(d). Show that g satisfies the ordinary differential equation $g' + \lambda g = 0$ almost everywhere. Explain what the annotation "almost everywhere" means in this case.

Solution:

$$g'(x) = \begin{cases} 0 & x < 0\\ \text{undefined} & x = 0\\ -\lambda^2 e^{-\lambda x} & x > 0 \end{cases}$$

Hence, $g'(x) + \lambda g(x)$ add up to 0 except at position x = 0, where g' is not defined.

(6) c) Show that, in the distributional sense, T_g satisfies the ordinary differential equation

$$T'_q + \lambda T_g = \lambda T_\delta$$

in which the right hand side denotes the Dirac point distribution defined above. **Solution:** $T'_g[\phi(x)] = -T_g[\phi'(x)] = -\int_{-\infty}^{\infty} g(x) \phi'(x) dx = -\int_0^{\infty} \lambda e^{-\lambda x} \phi'(x) dx = -\lambda e^{-\lambda x} \phi(x) \Big|_0^{\infty} + \int_0^{\infty} (-\lambda^2) e^{-\lambda x} \phi(x) dx = \lambda \phi(0) - \lambda \int_0^{\infty} \lambda e^{-\lambda x} \phi(x) dx = \lambda T_{\delta}[\phi(x)] - \lambda T_g[\phi(x)].$

(4) d) Derive the Fourier transform of the ordinary differential equation

$$T'_g + \lambda T_g = \lambda T_\delta$$
,

by applying the Fourier transformation \mathcal{F} to both sides of the equation, and show that \hat{g} is a solution.

Solution: We know that the Fourier transformation is linear $\mathcal{F}[\alpha f + \beta g] = \alpha \mathcal{F}[f] + \beta \mathcal{F}[g]$, that $\mathcal{F}[f'](\omega) = i\omega \hat{f}$, and that $\mathcal{F}[\delta] = 1$. Thus, we obtain $i\omega \hat{g} + \lambda \hat{g} = \lambda$. Recall $\hat{g} = \frac{\lambda}{\lambda + i\omega}$, which clearly satisfies the equation.