
EXAMINATION:

MATHEMATICAL TECHNIQUES

FOR IMAGE ANALYSIS

Course code: 8D020.
Date: Thursday April 8th, 2010.

Time: 14h00 – 17h00.
Place: AUD 13

Read this first!

• Write your name and student identification number on each paper.

• The exam consists of 3 problems on 5 pages. The maximum credit for each item is indicated
in parenthesis.

• Motivate your answers. The use of course notes and calculator is allowed. The use of the
problem companion, opgaven- en tentamenbundel, is not allowed.

• You may provide your answers in Dutch or (preferably) in English.

Good Luck!

1 Linear Algebra

Consider the set C∞(H1) of C-valued, infinitely differentiable functions on a unit half-cirlce H1.
We parametrize functions f ∈ C∞(H1) either by an angular coordinate θ ∈ [0, π] or by the
corresponding projection onto the z-axis, being z = cos θ (see Figure 1).
We equip the function space C∞(H1) with the inner product

〈f |g〉 :=

π∫
0

f∗(θ) g(θ) dθ , for f, g ∈ C∞(H1) , (1)

with f∗ denoting the complex-conjugate of f .
The corresponding measure is given by ||f || :=

√
〈f |f〉 .

For our calculations we utilize the orthogonal basis functions

bn : θ 7→ cos (n θ), for n ∈ {0, 1, 2, . . . } .
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Figure 1: Half-cirlce H1 parameterized by angle θ ∈ [0, π] or projection z = cos θ ∈ [−1, 1].

(4) a) With ei θ = cos θ + i sin θ, proof the trigonometric identity

cos2θ + sin2θ = 1 for θ ∈ R.

Note, that cos2θ stands for (cos θ)2 and sin2θ stands for (sin θ)2 .

Solution: Solving ei θ = cos θ + i sin θ for sin and cos, we obtain

cos2θ = 1
4

(
ei θ + e−i θ

)2
= 1

4

(
e2i θ + 2 ei θe−i θ + e−2i θ

)
= 1

4

(
e2i θ + 2 + e−2i θ

)
and

sin2θ = − 1
4

(
ei θ − e−i θ

)2
= − 1

4

(
e2i θ − 2 ei θe−i θ + e−2i θ

)
= − 1

4

(
e2i θ − 2 + e−2i θ

)
Hence, cos2θ + sin2θ = 1

4 (2 + 2) = 1.

(4) b) Proof Moivre’s formula

(cos θ + i sin θ)n = cos (n θ) + i sin (n θ)

for n ∈ N and θ ∈ R.

Solution: (cos θ + i sin θ)n =
(
eiθ
)n

= ei n θ = cos (n θ) + i sin (n θ).

(6) c) Show, that the inner product

〈f |g〉 :=

1∫
−1

f∗(arccos z) g(arccos z)
dz√

1− z2
, for f, g ∈ C∞(H1) . (2)

is equivalent to the inner product in equation (1). Note, that arccos is the inverse function of
cos. Hence, z = cos θ, θ = arccos z, and θ = arccos (cos θ) for all θ ∈ [0, π].

Solution: One has to perform in equation (1) the substitution z = cos θ to obtain equation (2).
Steps in that substitution are dz = − sin θ dθ and − sin θ = −

√
1− cos2 θ = −

√
1− z2 for

θ ∈ [0, π], so that dθ = − dz√
1−z2 . Note, that the boundaries cos 0 = 1 and cosπ = −1 of the

integration need to be flipped, inducing another overall minus sign.

π∫
0

f∗(θ) g(θ) dθ = −
−1∫
1

f∗(arccos z) g(arccos z)
dz√

1− z2
==

1∫
−1

f∗(arccos z) g(arccos z)
dz√

1− z2
.
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(5) d) Express the first three basis functions bn with n = 0, 1, 2 as polynomials Tn(z) of z.
Remark: the polynomials Tn(z) are the so-called Chebyshev polynomials of the first kind.

Solution:

T0(z) = b0(arccos z) = 1,

T1(z) = b1(arccos z) = cos (arccos z) = z,

T2(z) = b2(arccos z) = cos (2 arccos z) = cos2 (arccos z)− sin2 (arccos z)

= z2 −
(
1− cos2 (arccos z)

)
= 2 z2 − 1

(5) e) Verify the orthogonality relation for all n = {0, 1, 2, 3, . . . }.

1∫
−1

T ∗n(z)Tm(z)
dz√

1− z2
=


π , n = m = 0
π
2 , n = m 6= 0

0 , n 6= m

. (3)

Tip: Remember the relation between Tn(z) and bn(θ).

Solution:
∫ 1

−1 T
∗
n(z)Tm(z) dz√

1−z2 =
∫ π
0
b∗n(θ)bm(θ) dθ =

∫ π
0

cos (n θ) cos (mθ) dθ.

We now utilize the trigonometric identity (see script) cos(α± β) = cos(α) cos(β)± sin(α) sin(β).
Adding the two versions of this identity results in cos(α−β)+cos(α+β) = 2 cos(α) cos(β). Substi-
tuting for α 7→ n θ and β 7→ mθ we have cos(mθ) cos(n θ) = 1

2 (cos((n−m) θ)+cos((m+n) θ)). We

return to the integral.
∫ π
0

cos (n θ) cos (mθ) dθ = 1
2

(∫ π
0

cos((n−m) θ) dθ +
∫ π
0

cos((m+ n) θ) dθ
)
.

Consider the case n = m = 0: 1
2

(∫ π
0

1 dθ +
∫ π
0

1 θ) dθ
)

= π.

Consider the case n = m 6= 0: 1
2

(∫ π
0

1 dθ +
∫ π
0

cos(2n θ) dθ
)

= 1
2 (π + 0) = π

2 .

Consider the case n 6= m: 1
2

(
sin(π(m−n))

m−n + sin(π(m+n))
m+n

)
= 1

2 (0 + 0) = 0.

(6) f) Derive the recursion relation

Tn(z) = 2 z Tn−1(z)− Tn−2(z)

for all n ∈ {2, 3, 4, . . . }.
Tip: First proof the trigonometric relation cos(n θ) = 2 cos(θ) cos((n− 1) θ)− cos((n− 2) θ).

Solution:

2 cos(θ) cos((n− 1) θ)− cos((n− 2) θ)

=
(
ei θ + e−i θ

) 1

2

(
ei (n−1) θ + e−i (n−1) θ

)
− 1

2

(
ei (n−2) θ + e−i (n−2) θ

)
=

1

2

(
ei (n) θ + e−i (n) θ

)
+

1

2

(
ei (n−2) θ + e−i (n−2) θ

)
− 1

2

(
ei (n−2) θ + e−i (n−2) θ

)
=

1

2

(
ei (n) θ + e−i (n) θ

)
= cos(n θ)

Substituting cos (q θ) by Tq(z) and T1(z) by z, one obtains the recursion.
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(5) g) Determine the expansion of function v : z 7→
√

1− z2 in the orthonormal basis

1
0
0
0
0
...


=

1√
π
T0 ,



0
1
0
0
0
...


=

√
2

π
T1 ,



0
0
1
0
0
...


=

√
2

π
T2 ,



0
0
0
1
0
...


=

√
2

π
T3 ,



0
0
0
0
1
...


=

√
2

π
T4 , . . .

Neglect all basis functions with n ≥ 5.

Solution: All inner products below are integrals of simple polynomials.

v =



〈√
1− z2| 1√

π
T0

〉
〈√

1− z2|
√

2
π T1

〉
〈√

1− z2|
√

2
π T2

〉
〈√

1− z2|
√

2
π T3

〉
〈√

1− z2|
√

2
π T4

〉
...


=



2√
π

0

− 2
3

√
2
π

0

− 2
15

√
2
π

...


.

(5) h) Determine the matrix M of the linear transformation f 7→ z f in the orthonormal basis
given above. Again, neglect all basis functions with n ≥ 5.
Tip: Recall the result of problem 1(f).

Solution: Rewrite the recursion as z Tn−1(z) = 1
2 (Tn(z) + Tn−2(z)) and shift it in n by one:

z Tn(z) = 1
2 (Tn+1(z) + Tn−1(z)) for n ≥ 1. Furthermore, recall z T0(z) = T1(z). Thus, one can

write

M =
1

2



0 1 0 0 0 . . .√
2 0 1 0 0 . . .

0 1 0 1 0 . . .
0 0 1 0 1 . . .
0 0 0 1 0 . . .
...

...
...

...
...

. . .


.

(5) i) Prove or disprove, that the following definition is an inner product for function space
C∞(H1)?

〈f |g〉 :=

π∫
0

(
f∗(θ) g(θ) + 1

)
dθ .

Solution: The proposed inner product is not linear! Example: 〈f |2g〉 6= 2 〈f |g〉.
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2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

f̂(ω) = F [f ](ω) :=

∞∫
−∞

f(x) e−i ω x dx .

Inverse Fourier transformation:

f(x) = F−1
[
f̂
]
(x) :=

1

2π

∞∫
−∞

f̂(ω) ei ω x dω .

(4) a) Show that
∞∫
−∞

f(x) dx = f̂(0) .

Solution: f̂(0) =
∫∞
−∞ f(x) e−i 0 x dx =

∫∞
−∞ f(x) dx, since e−i0x = 1.

(5) b) Show that
∞∫
−∞

x f(x) dx = i f̂ ′(0) .

Note, that f̂ ′(0) denotes the derivative of the Fourier transform f̂ at ω = 0.

Solution: f̂ ′(ω) =
∫∞
−∞ ∂ωf(x) e−i ω x dx =

∫∞
−∞ f(x) (−i x) e−i ω x dx. Hence, for ω = 0 we

i f̂ ′(0) =
∫∞
−∞ f(x) i (−i)x e−i 0 x dx =

∫∞
−∞ f(x)x dx.

(6) c) Show that for h(x) := f(a x) with a ∈ R and a 6= 0, the Fourier transform is given by

ĥ(ω) =
1

|a|
f̂
(ω
a

)
.

Solution: The solution is given by a simple substitutionz = a x.
For a > 0 we have

∫∞
−∞ f(a x) e−i ω x dx =

∫∞
−∞ f(z) e−i

ω z
a

dz
a = 1

a f̂
(
ω
a

)
.

For a < 0 we have
∫∞
−∞ f(a x) e−i ω x dx =

∫ −∞
∞ f(z) e−i

ω z
a

dz
−|a| =

∫∞
−∞ f(z) e−i

ω z
a

dz
|a| = 1

|a| f̂
(
ω
a

)
.

Hence, for both cases we can write: ĥ(ω) = 1
|a| f̂

(
ω
a

)
(6) d) Consider for λ > 0 the function

g : x 7→

{
0 for x < 0

λ e−λx for x ≥ 0
.

Derive the Fourier transform ĝ.

Solution: ĝ(ω) =
∫∞
−∞ g(x) e−i ω x dx =

∫∞
0
λ e−λx e−i ω x dx =

∫∞
0
λ e−(λ+i ω) x dx = −λ e

−(λ+i ω) x

λ+i ω

∣∣∣∞
0

=

λ
λ+i ω .
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Consider the two cardinal B-spline functions

B0 : x 7→

{
1 for − 1

2 ≤ x ≤
1
2

0 otherwise

and

B1 : x 7→


1 + x for − 1 ≤ x ≤ 0

1− x for 0 < x ≤ 1

0 otherwise

.

(5) e) Show, that B1 = B0 ∗B0 where ∗ denotes the convolution

(
f ∗ g

)
(x) :=

∞∫
−∞

f(y) g(x− y) dy .

Solution: We need to distinguish three cases:
1. The two B0 kernels do not have any overlap for |x| > 1. In this case, B1 is 0.
2. For −1 ≤ x < 0, B0(x− y) is more left then B0(y). The two kernels overlap from y = − 1

2 to

y = x+ 1
2 so that B1(x) =

∫ x+ 1
2

− 1
2

1 dx = (x+ 1
2 + 1

2 ) = x+ 1.

3. For 0 ≤ x ≤ 1, B0(x− y) is more right than B0(y). The two kernels overlap from y = x− 1
2

to y = 1
2 so that B1(x) =

∫ 1
2

x− 1
2

1 dx = ( 1
2 − (x− 1

2 )) = 1− x.

(4) f) Determine the Fourier transform B̂0.

Solution: B̂0(ω) =
∫∞
−∞B0(x) e−i ω x dx =

∫ 1
2

− 1
2

e−i ω x dx = sin (ω/2)
ω/2

(5) g) Determine the Fourier transform B̂1.
Recall the Fourier theorem F [f ∗ g] = F [f ] F [g].

Solution: B̂1(ω) = B̂2
0(ω) =

(
sin (ω/2)
ω/2

)2
.
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3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac δ-function, provides a tempered
distribution with the following property.

Tδ [φ(x)] :=

∞∫
−∞

δ(x)φ(x) dx = φ(0) .

(6) a) Determine the result of the following distribution acting on an arbitrary Schwarz function
φ ∈ S(R).

∞∫
−∞

δ(sinhx) φ(x) dx .

Recall, that sinhx = 1
2 (ex − e−x), sinh′ = cosh, and cosh2x− sinh2x = 1.

Solution: Perform a substitution z = sinhx with dz = coshx dx and, thus, dx = dz√
1+z2

. So∫∞
−∞ δ(sinhx) φ(x) dx =

∫∞
−∞ δ(z) φ(arcsinh(z)) dz√

1+z2
= φ(arcsinh(0))

√
1 + 02 = φ(0).

(4) b) We consider the function g : R → R in problem 2(d). Show that g satisfies the ordinary
differential equation g′ + λ g = 0 almost everywhere. Explain what the annotation ”almost
everywhere” means in this case.

Solution:

g′(x) =


0 x < 0

undefined x = 0

−λ2 e−λx x > 0

.

Hence, g′(x) + λg(x) add up to 0 except at position x = 0, where g′ is not defined.

(6) c) Show that, in the distributional sense, Tg satisfies the ordinary differential equation

T ′g + λTg = λTδ ,

in which the right hand side denotes the Dirac point distribution defined above.

Solution: T ′g [φ(x)] = −Tg [φ′(x)] = −
∫∞
−∞ g(x)φ′(x) dx = −

∫∞
0
λ e−λx φ′(x) dx = − λ e−λx φ(x)

∣∣∞
0

+∫∞
0

(−λ2) e−λx φ(x) dx = λφ(0) − λ
∫∞
0
λ e−λx φ(x) dx = λTδ [φ(x)] − λTg [φ(x)].

(4) d) Derive the Fourier transform of the ordinary differential equation

T ′g + λTg = λTδ ,

by applying the Fourier transformation F to both sides of the equation, and show that ĝ is a
solution.

Solution: We know that the Fourier transformation is linear F [α f + β g] = αF [f ] + β F [g],

that F [f ′] (ω) = i ω f̂ , and that F [δ] = 1. Thus, we obtain i ω ĝ + λ ĝ = λ. Recall ĝ = λ
λ+i ω ,

which clearly satisfies the equation.
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