EXAMINATION:
 MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020.
Date: Thursday April $8^{\text {th }}, 2010$.
Time: 14h00-17h00.
Place: AUD 13

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems on 5 pages. The maximum credit for each item is indicated in parenthesis.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, opgaven- en tentamenbundel, is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

Good Luck!

1 Linear Algebra

Consider the set $\mathcal{C}^{\infty}\left(H^{1}\right)$ of \mathbb{C}-valued, infinitely differentiable functions on a unit half-cirlce H^{1}. We parametrize functions $f \in \mathcal{C}^{\infty}\left(H^{1}\right)$ either by an angular coordinate $\theta \in[0, \pi]$ or by the corresponding projection onto the z-axis, being $z=\cos \theta$ (see Figure 1).
We equip the function space $\mathcal{C}^{\infty}\left(H^{1}\right)$ with the inner product

$$
\begin{equation*}
\langle f \mid g\rangle:=\int_{0}^{\pi} f^{*}(\theta) g(\theta) d \theta, \text { for } f, g \in \mathcal{C}^{\infty}\left(H^{1}\right), \tag{1}
\end{equation*}
$$

with f^{*} denoting the complex-conjugate of f.
The corresponding measure is given by $\|f\|:=\sqrt{\langle f \mid f\rangle}$.
For our calculations we utilize the orthogonal basis functions

$$
b_{n}: \theta \mapsto \cos (n \theta), \text { for } n \in\{0,1,2, \ldots\}
$$

Figure 1: Half-cirlce H^{1} parameterized by angle $\theta \in[0, \pi]$ or projection $z=\cos \theta \in[-1,1]$.
(4) a) With $e^{i \theta}=\cos \theta+i \sin \theta$, proof the trigonometric identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \text { for } \theta \in \mathbb{R}
$$

Note, that $\cos ^{2} \theta$ stands for $(\cos \theta)^{2}$ and $\sin ^{2} \theta$ stands for $(\sin \theta)^{2}$.
Solution: Solving $e^{i \theta}=\cos \theta+i \sin \theta$ for sin and \cos, we obtain $\cos ^{2} \theta=\frac{1}{4}\left(e^{i \theta}+e^{-i \theta}\right)^{2}=\frac{1}{4}\left(e^{2 i \theta}+2 e^{i \theta} e^{-i \theta}+e^{-2 i \theta}\right)=\frac{1}{4}\left(e^{2 i \theta}+2+e^{-2 i \theta}\right)$ and $\sin ^{2} \theta=-\frac{1}{4}\left(e^{i \theta}-e^{-i \theta}\right)^{2}=-\frac{1}{4}\left(e^{2 i \theta}-2 e^{i \theta} e^{-i \theta}+e^{-2 i \theta}\right)=-\frac{1}{4}\left(e^{2 i \theta}-2+e^{-2 i \theta}\right)$ Hence, $\cos ^{2} \theta+\sin ^{2} \theta=\frac{1}{4}(2+2)=1$.
(4) b) Proof Moivre's formula

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

for $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$.
Solution: $(\cos \theta+i \sin \theta)^{n}=\left(e^{i \theta}\right)^{n}=e^{i n \theta}=\cos (n \theta)+i \sin (n \theta)$.
(6) c) Show, that the inner product

$$
\begin{equation*}
\langle f \mid g\rangle:=\int_{-1}^{1} f^{*}(\arccos z) g(\arccos z) \frac{d z}{\sqrt{1-z^{2}}}, \text { for } f, g \in \mathcal{C}^{\infty}\left(H^{1}\right) \tag{2}
\end{equation*}
$$

is equivalent to the inner product in equation (1). Note, that arccos is the inverse function of cos. Hence, $z=\cos \theta, \theta=\arccos z$, and $\theta=\arccos (\cos \theta)$ for all $\theta \in[0, \pi]$.
Solution: One has to perform in equation (1) the substitution $z=\cos \theta$ to obtain equation (2). Steps in that substitution are $d z=-\sin \theta d \theta$ and $-\sin \theta=-\sqrt{1-\cos ^{2} \theta}=-\sqrt{1-z^{2}}$ for $\theta \in[0, \pi]$, so that $d \theta=-\frac{d z}{\sqrt{1-z^{2}}}$. Note, that the boundaries $\cos 0=1$ and $\cos \pi=-1$ of the integration need to be flipped, inducing another overall minus sign.

$$
\int_{0}^{\pi} f^{*}(\theta) g(\theta) d \theta=-\int_{1}^{-1} f^{*}(\arccos z) g(\arccos z) \frac{d z}{\sqrt{1-z^{2}}}==\int_{-1}^{1} f^{*}(\arccos z) g(\arccos z) \frac{d z}{\sqrt{1-z^{2}}}
$$

(5) d) Express the first three basis functions b_{n} with $n=0,1,2$ as polynomials $T_{n}(z)$ of z. Remark: the polynomials $T_{n}(z)$ are the so-called Chebyshev polynomials of the first kind.

Solution:

$$
\begin{aligned}
T_{0}(z) & =b_{0}(\arccos z)=1 \\
T_{1}(z) & =b_{1}(\arccos z)=\cos (\arccos z)=z \\
T_{2}(z) & =b_{2}(\arccos z)=\cos (2 \arccos z)=\cos ^{2}(\arccos z)-\sin ^{2}(\arccos z) \\
& =z^{2}-\left(1-\cos ^{2}(\arccos z)\right)=2 z^{2}-1
\end{aligned}
$$

(5) e) Verify the orthogonality relation for all $n=\{0,1,2,3, \ldots\}$.

$$
\int_{-1}^{1} T_{n}^{*}(z) T_{m}(z) \frac{d z}{\sqrt{1-z^{2}}}= \begin{cases}\pi & , n=m=0 \tag{3}\\ \frac{\pi}{2} & , n=m \neq 0 \\ 0 & , n \neq m\end{cases}
$$

Tip: Remember the relation between $T_{n}(z)$ and $b_{n}(\theta)$.
Solution: $\int_{-1}^{1} T_{n}^{*}(z) T_{m}(z) \frac{d z}{\sqrt{1-z^{2}}}=\int_{0}^{\pi} b_{n}^{*}(\theta) b_{m}(\theta) d \theta=\int_{0}^{\pi} \cos (n \theta) \cos (m \theta) d \theta$.
We now utilize the trigonometric identity (see script) $\cos (\alpha \pm \beta)=\cos (\alpha) \cos (\beta) \pm \sin (\alpha) \sin (\beta)$. Adding the two versions of this identity results in $\cos (\alpha-\beta)+\cos (\alpha+\beta)=2 \cos (\alpha) \cos (\beta)$. Substituting for $\alpha \mapsto n \theta$ and $\beta \mapsto m \theta$ we have $\cos (m \theta) \cos (n \theta)=\frac{1}{2}(\cos ((n-m) \theta)+\cos ((m+n) \theta))$. We return to the integral. $\int_{0}^{\pi} \cos (n \theta) \cos (m \theta) d \theta=\frac{1}{2}\left(\int_{0}^{\pi} \cos ((n-m) \theta) d \theta+\int_{0}^{\pi} \cos ((m+n) \theta) d \theta\right)$. Consider the case $\left.n=m=0: \frac{1}{2}\left(\int_{0}^{\pi} 1 d \theta+\int_{0}^{\pi} 1 \theta\right) d \theta\right)=\pi$.
Consider the case $n=m \neq 0: \frac{1}{2}\left(\int_{0}^{\pi} 1 d \theta+\int_{0}^{\pi} \cos (2 n \theta) d \theta\right)=\frac{1}{2}(\pi+0)=\frac{\pi}{2}$.
Consider the case $n \neq m: \frac{1}{2}\left(\frac{\sin (\pi(m-n))}{m-n}+\frac{\sin (\pi(m+n))}{m+n}\right)=\frac{1}{2}(0+0)=0$.
(6) f) Derive the recursion relation

$$
T_{n}(z)=2 z T_{n-1}(z)-T_{n-2}(z)
$$

for all $n \in\{2,3,4, \ldots\}$.
Tip: First proof the trigonometric relation $\cos (n \theta)=2 \cos (\theta) \cos ((n-1) \theta)-\cos ((n-2) \theta)$.

Solution:

$2 \cos (\theta) \cos ((n-1) \theta)-\cos ((n-2) \theta)$

$$
\begin{aligned}
& =\left(e^{i \theta}+e^{-i \theta}\right) \frac{1}{2}\left(e^{i(n-1) \theta}+e^{-i(n-1) \theta}\right)-\frac{1}{2}\left(e^{i(n-2) \theta}+e^{-i(n-2) \theta}\right) \\
& =\frac{1}{2}\left(e^{i(n) \theta}+e^{-i(n) \theta}\right)+\frac{1}{2}\left(e^{i(n-2) \theta}+e^{-i(n-2) \theta}\right)-\frac{1}{2}\left(e^{i(n-2) \theta}+e^{-i(n-2) \theta}\right) \\
& =\frac{1}{2}\left(e^{i(n) \theta}+e^{-i(n) \theta}\right) \\
& =\cos (n \theta)
\end{aligned}
$$

Substituting $\cos (q \theta)$ by $T_{q}(z)$ and $T_{1}(z)$ by z, one obtains the recursion.
(5) \mathbf{g}) Determine the expansion of function $v: z \mapsto \sqrt{1-z^{2}}$ in the orthonormal basis

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right)=\frac{1}{\sqrt{\pi}} T_{0},\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{1},\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{2},\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{3},\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{4}, \ldots
$$

Neglect all basis functions with $n \geq 5$.
Solution: All inner products below are integrals of simple polynomials.

$$
v=\left(\begin{array}{c}
\left\langle\sqrt{1-z^{2}} \left\lvert\, \frac{1}{\sqrt{\pi}} T_{0}\right.\right\rangle \\
\left\langle\sqrt{1-z^{2}} \left\lvert\, \sqrt{\frac{2}{\pi}} T_{1}\right.\right\rangle \\
\left\langle\sqrt{1-z^{2}} \left\lvert\, \sqrt{\frac{2}{\pi}} T_{2}\right.\right\rangle \\
\left\langle\sqrt{1-z^{2}} \left\lvert\, \sqrt{\frac{2}{\pi}} T_{3}\right.\right\rangle \\
\left\langle\sqrt{1-z^{2}} \left\lvert\, \sqrt{\frac{2}{\pi}} T_{4}\right.\right\rangle \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
\frac{2}{\sqrt{\pi}} \\
0 \\
-\frac{2}{3} \sqrt{\frac{2}{\pi}} \\
0 \\
-\frac{2}{15} \sqrt{\frac{2}{\pi}} \\
\vdots
\end{array}\right)
$$

(5) h) Determine the matrix M of the linear transformation $f \mapsto z f$ in the orthonormal basis given above. Again, neglect all basis functions with $n \geq 5$.
Tip: Recall the result of problem 1(f).
Solution: Rewrite the recursion as $z T_{n-1}(z)=\frac{1}{2}\left(T_{n}(z)+T_{n-2}(z)\right)$ and shift it in n by one: $z T_{n}(z)=\frac{1}{2}\left(T_{n+1}(z)+T_{n-1}(z)\right)$ for $n \geq 1$. Furthermore, recall $z T_{0}(z)=T_{1}(z)$. Thus, one can write

$$
M=\frac{1}{2}\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & \ldots \\
\sqrt{2} & 0 & 1 & 0 & 0 & \ldots \\
0 & 1 & 0 & 1 & 0 & \ldots \\
0 & 0 & 1 & 0 & 1 & \ldots \\
0 & 0 & 0 & 1 & 0 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

(5) i) Prove or disprove, that the following definition is an inner product for function space $\mathcal{C}^{\infty}\left(H^{1}\right)$?

$$
\langle f \mid g\rangle:=\int_{0}^{\pi}\left(f^{*}(\theta) g(\theta)+1\right) d \theta
$$

Solution: The proposed inner product is not linear! Example: $\langle f \mid 2 g\rangle \neq 2\langle f \mid g\rangle$.

2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

$$
\hat{f}(\omega)=\mathcal{F}[f](\omega):=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

Inverse Fourier transformation:

$$
f(x)=\mathcal{F}^{-1}[\hat{f}](x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega
$$

(4) a) Show that

$$
\int_{-\infty}^{\infty} f(x) d x=\hat{f}(0)
$$

Solution: $\hat{f}(0)=\int_{-\infty}^{\infty} f(x) e^{-i 0 x} d x=\int_{-\infty}^{\infty} f(x) d x$, since $e^{-i 0 x}=1$.
(5) b) Show that

$$
\int_{-\infty}^{\infty} x f(x) d x=i \hat{f}^{\prime}(0)
$$

Note, that $\hat{f}^{\prime}(0)$ denotes the derivative of the Fourier transform \hat{f} at $\omega=0$.
Solution: $\hat{f}^{\prime}(\omega)=\int_{-\infty}^{\infty} \partial_{\omega} f(x) e^{-i \omega x} d x=\int_{-\infty}^{\infty} f(x)(-i x) e^{-i \omega x} d x$. Hence, for $\omega=0$ we $i \hat{f}^{\prime}(0)=\int_{-\infty}^{\infty} f(x) i(-i) x e^{-i 0 x} d x=\int_{-\infty}^{\infty} f(x) x d x$.
(6) c) Show that for $h(x):=f(a x)$ with $a \in \mathbb{R}$ and $a \neq 0$, the Fourier transform is given by

$$
\hat{h}(\omega)=\frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right) .
$$

Solution: The solution is given by a simple substitutionz $=a x$.
For $a>0$ we have $\int_{-\infty}^{\infty} f(a x) e^{-i \omega x} d x=\int_{-\infty}^{\infty} f(z) e^{-i \frac{\omega z}{a}} \frac{d z}{a}=\frac{1}{a} \hat{f}\left(\frac{\omega}{a}\right)$.
For $a<0$ we have $\int_{-\infty}^{\infty} f(a x) e^{-i \omega x} d x=\int_{\infty}^{-\infty} f(z) e^{-i \frac{\omega z}{a}} \frac{d z}{-|a|}=\int_{-\infty}^{\infty} f(z) e^{-i \frac{\omega z}{a}} \frac{d z}{|a|}=\frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right)$.
Hence, for both cases we can write: $\hat{h}(\omega)=\frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right)$
(6) d) Consider for $\lambda>0$ the function

$$
g: x \mapsto\left\{\begin{array}{ll}
0 & \text { for } x<0 \\
\lambda e^{-\lambda x} & \text { for } x \geq 0
\end{array} .\right.
$$

Derive the Fourier transform \hat{g}.
Solution: $\hat{g}(\omega)=\int_{-\infty}^{\infty} g(x) e^{-i \omega x} d x=\int_{0}^{\infty} \lambda e^{-\lambda x} e^{-i \omega x} d x=\int_{0}^{\infty} \lambda e^{-(\lambda+i \omega) x} d x=-\left.\frac{\lambda e^{-(\lambda+i \omega) x}}{\lambda+i \omega}\right|_{0} ^{\infty}=$ $\frac{\lambda}{\lambda+i \omega}$.

Consider the two cardinal B-spline functions

$$
B_{0}: x \mapsto \begin{cases}1 & \text { for }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
B_{1}: x \mapsto \begin{cases}1+x & \text { for }-1 \leq x \leq 0 \\ 1-x & \text { for } 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(5) e) Show, that $B_{1}=B_{0} * B_{0}$ where $*$ denotes the convolution

$$
(f * g)(x):=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

Solution: We need to distinguish three cases:

1. The two B_{0} kernels do not have any overlap for $|x|>1$. In this case, B_{1} is 0 .
2. For $-1 \leq x<0, B_{0}(x-y)$ is more left then $B_{0}(y)$. The two kernels overlap from $y=-\frac{1}{2}$ to $y=x+\frac{1}{2}$ so that $B_{1}(x)=\int_{-\frac{1}{2}}^{x+\frac{1}{2}} 1 d x=\left(x+\frac{1}{2}+\frac{1}{2}\right)=x+1$.
3. For $0 \leq x \leq 1, B_{0}(x-y)$ is more right than $B_{0}(y)$. The two kernels overlap from $y=x-\frac{1}{2}$ to $y=\frac{1}{2}$ so that $B_{1}(x)=\int_{x-\frac{1}{2}}^{\frac{1}{2}} 1 d x=\left(\frac{1}{2}-\left(x-\frac{1}{2}\right)\right)=1-x$.
(4) f) Determine the Fourier transform $\hat{B_{0}}$.

Solution: $\hat{B}_{0}(\omega)=\int_{-\infty}^{\infty} B_{0}(x) e^{-i \omega x} d x=\int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-i \omega x} d x=\frac{\sin (\omega / 2)}{\omega / 2}$
$(5) \mathrm{g})$ Determine the Fourier transform $\hat{B_{1}}$.
Recall the Fourier theorem $\mathcal{F}[f * g]=\mathcal{F}[f] \mathcal{F}[g]$.
Solution: $\hat{B}_{1}(\omega)=\hat{B}_{0}^{2}(\omega)=\left(\frac{\sin (\omega / 2)}{\omega / 2}\right)^{2}$.

3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac δ-function, provides a tempered distribution with the following property.

$$
T_{\delta}[\phi(x)]:=\int_{-\infty}^{\infty} \delta(x) \phi(x) d x=\phi(0)
$$

(6) a) Determine the result of the following distribution acting on an arbitrary Schwarz function $\phi \in \mathcal{S}(\mathbb{R})$.

$$
\int_{-\infty}^{\infty} \delta(\sinh x) \phi(x) d x
$$

Recall, that $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \sinh ^{\prime}=\cosh$, and $\cosh ^{2} x-\sinh ^{2} x=1$.
Solution: Perform a substitution $z=\sinh x$ with $d z=\cosh x d x$ and, thus, $d x=\frac{d z}{\sqrt{1+z^{2}}}$. So $\int_{-\infty}^{\infty} \delta(\sinh x) \phi(x) d x=\int_{-\infty}^{\infty} \delta(z) \phi(\operatorname{arcsinh}(z)) \frac{d z}{\sqrt{1+z^{2}}}=\phi(\operatorname{arcsinh}(0)) \sqrt{1+0^{2}}=\phi(0)$.
(4) b) We consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ in problem $2(\mathrm{~d})$. Show that g satisfies the ordinary differential equation $g^{\prime}+\lambda g=0$ almost everywhere. Explain what the annotation "almost everywhere" means in this case.

Solution:

$$
g^{\prime}(x)= \begin{cases}0 & x<0 \\ \text { undefined } & x=0 \\ -\lambda^{2} e^{-\lambda x} & x>0\end{cases}
$$

Hence, $g^{\prime}(x)+\lambda g(x)$ add up to 0 except at position $x=0$, where g^{\prime} is not defined.
(6) c) Show that, in the distributional sense, T_{g} satisfies the ordinary differential equation

$$
T_{g}^{\prime}+\lambda T_{g}=\lambda T_{\delta}
$$

in which the right hand side denotes the Dirac point distribution defined above.
Solution: $T_{g}^{\prime}[\phi(x)]=-T_{g}\left[\phi^{\prime}(x)\right]=-\int_{-\infty}^{\infty} g(x) \phi^{\prime}(x) d x=-\int_{0}^{\infty} \lambda e^{-\lambda x} \phi^{\prime}(x) d x=-\left.\lambda e^{-\lambda x} \phi(x)\right|_{0} ^{\infty}+$ $\int_{0}^{\infty}\left(-\lambda^{2}\right) e^{-\lambda x} \phi(x) d x=\lambda \phi(0)-\lambda \int_{0}^{\infty} \lambda e^{-\lambda x} \phi(x) d x=\lambda T_{\delta}[\phi(x)]-\lambda T_{g}[\phi(x)]$.
(4) d) Derive the Fourier transform of the ordinary differential equation

$$
T_{g}^{\prime}+\lambda T_{g}=\lambda T_{\delta}
$$

by applying the Fourier transformation \mathcal{F} to both sides of the equation, and show that \hat{g} is a solution.
Solution: We know that the Fourier transformation is linear $\mathcal{F}[\alpha f+\beta g]=\alpha \mathcal{F}[f]+\beta \mathcal{F}[g]$, that $\mathcal{F}\left[f^{\prime}\right](\omega)=i \omega \hat{f}$, and that $\mathcal{F}[\delta]=1$. Thus, we obtain $i \omega \hat{g}+\lambda \hat{g}=\lambda$. Recall $\hat{g}=\frac{\lambda}{\lambda+i \omega}$, which clearly satisfies the equation.

