EXAMINATION:
 MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020.
Date: Thursday April $8^{\text {th }}, 2010$.
Time: 14h00-17h00.
Place: AUD 13

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems on 5 pages. The maximum credit for each item is indicated in parenthesis.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, opgaven- en tentamenbundel, is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

Good Luck!

1 Linear Algebra

Consider the set $\mathcal{C}^{\infty}\left(H^{1}\right)$ of \mathbb{C}-valued, infinitely differentiable functions on a unit half-cirlce H^{1}. We parametrize functions $f \in \mathcal{C}^{\infty}\left(H^{1}\right)$ either by an angular coordinate $\theta \in[0, \pi]$ or by the corresponding projection onto the z-axis, being $z=\cos \theta$ (see Figure 1).
We equip the function space $\mathcal{C}^{\infty}\left(H^{1}\right)$ with the inner product

$$
\begin{equation*}
\langle f \mid g\rangle:=\int_{0}^{\pi} f^{*}(\theta) g(\theta) d \theta, \text { for } f, g \in \mathcal{C}^{\infty}\left(H^{1}\right), \tag{1}
\end{equation*}
$$

with f^{*} denoting the complex-conjugate of f.
The corresponding measure is given by $\|f\|:=\sqrt{\langle f \mid f\rangle}$.
For our calculations we utilize the orthogonal basis functions

$$
b_{n}: \theta \mapsto \cos (n \theta), \text { for } n \in\{0,1,2, \ldots\}
$$

Figure 1: Half-cirlce H^{1} parameterized by angle $\theta \in[0, \pi]$ or projection $z=\cos \theta \in[-1,1]$.
(4) a) With $e^{i \theta}=\cos \theta+i \sin \theta$, proof the trigonometric identity

$$
\cos ^{2} \theta+\sin ^{2} \theta=1 \quad \text { for } \theta \in \mathbb{R}
$$

Note, that $\cos ^{2} \theta$ stands for $(\cos \theta)^{2}$ and $\sin ^{2} \theta$ stands for $(\sin \theta)^{2}$.
(4) b) Proof Moivre's formula

$$
(\cos \theta+i \sin \theta)^{n}=\cos (n \theta)+i \sin (n \theta)
$$

for $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$.
(6) c) Show, that the inner product

$$
\begin{equation*}
\langle f \mid g\rangle:=\int_{-1}^{1} f^{*}(\arccos z) g(\arccos z) \frac{d z}{\sqrt{1-z^{2}}}, \text { for } f, g \in \mathcal{C}^{\infty}\left(H^{1}\right) \tag{2}
\end{equation*}
$$

is equivalent to the inner product in equation (1). Note, that arccos is the inverse function of cos. Hence, $z=\cos \theta, \theta=\arccos z$, and $\theta=\arccos (\cos \theta)$ for all $\theta \in[0, \pi]$.
(5) d) Express the first three basis functions b_{n} with $n=0,1,2$ as polynomials $T_{n}(z)$ of z. Remark: the polynomials $T_{n}(z)$ are the so-called Chebyshev polynomials of the first kind.
(5) e) Verify the orthogonality relation for all $n=\{0,1,2,3, \ldots\}$.

$$
\int_{-1}^{1} T_{n}^{*}(z) T_{m}(z) \frac{d z}{\sqrt{1-z^{2}}}= \begin{cases}\pi & , n=m=0 \tag{3}\\ \frac{\pi}{2} & , n=m \neq 0 \\ 0 & , n \neq m\end{cases}
$$

Tip: Remember the relation between $T_{n}(z)$ and $b_{n}(\theta)$.
(6) f) Derive the recursion relation

$$
T_{n}(z)=2 z T_{n-1}(z)-T_{n-2}(z)
$$

for all $n \in\{2,3,4, \ldots\}$.
Tip: First proof the trigonometric relation $\cos (n \theta)=2 \cos (\theta) \cos ((n-1) \theta)-\cos ((n-2) \theta)$.
(5) \mathbf{g}) Determine the expansion of function $v: z \mapsto \sqrt{1-z^{2}}$ in the orthonormal basis

$$
\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right)=\frac{1}{\sqrt{\pi}} T_{0},\left(\begin{array}{c}
0 \\
1 \\
0 \\
0 \\
0 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{1},\left(\begin{array}{c}
0 \\
0 \\
1 \\
0 \\
0 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{2},\left(\begin{array}{c}
0 \\
0 \\
0 \\
1 \\
0 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{3},\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1 \\
\vdots
\end{array}\right)=\sqrt{\frac{2}{\pi}} T_{4}, \ldots
$$

Neglect all basis functions with $n \geq 5$.
(5) h) Determine the matrix M of the linear transformation $f \mapsto z f$ in the orthonormal basis given above. Again, neglect all basis functions with $n \geq 5$.
Tip: Recall the result of problem 1(f).
(5) i) Prove or disprove, that the following definition is an inner product for function space $\mathcal{C}^{\infty}\left(H^{1}\right)$?

$$
\langle f \mid g\rangle:=\int_{0}^{\pi}\left(f^{*}(\theta) g(\theta)+1\right) d \theta
$$

2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

$$
\hat{f}(\omega)=\mathcal{F}[f](\omega):=\int_{-\infty}^{\infty} f(x) e^{-i \omega x} d x
$$

Inverse Fourier transformation:

$$
f(x)=\mathcal{F}^{-1}[\hat{f}](x):=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d \omega
$$

(4) a) Show that

$$
\int_{-\infty}^{\infty} f(x) d x=\hat{f}(0)
$$

(5) b) Show that

$$
\int_{-\infty}^{\infty} x f(x) d x=i \hat{f}^{\prime}(0)
$$

Note, that $\hat{f}^{\prime}(0)$ denotes the derivative of the Fourier transform \hat{f} at $\omega=0$.
(6) c) Show that for $h(x):=f(a x)$ with $a \in \mathbb{R}$ and $a \neq 0$, the Fourier transform is given by

$$
\hat{h}(\omega)=\frac{1}{|a|} \hat{f}\left(\frac{\omega}{a}\right)
$$

(6) d) Consider for $\lambda>0$ the function

$$
g: x \mapsto \begin{cases}0 & \text { for } x<0 \\ \lambda e^{-\lambda x} & \text { for } x \geq 0\end{cases}
$$

Derive the Fourier transform \hat{g}.

Consider the two cardinal B-spline functions

$$
B_{0}: x \mapsto \begin{cases}1 & \text { for }-\frac{1}{2} \leq x \leq \frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
B_{1}: x \mapsto \begin{cases}1+x & \text { for }-1 \leq x \leq 0 \\ 1-x & \text { for } 0<x \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

(5) e) Show, that $B_{1}=B_{0} * B_{0}$ where $*$ denotes the convolution

$$
(f * g)(x):=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

(4) f) Determine the Fourier transform $\hat{B_{0}}$.
(5) g) Determine the Fourier transform $\hat{B_{1}}$.

Recall the Fourier theorem $\mathcal{F}[f * g]=\mathcal{F}[f] \mathcal{F}[g]$.

3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac δ-function, provides a tempered distribution with the following property.

$$
T_{\delta}[\phi(x)]:=\int_{-\infty}^{\infty} \delta(x) \phi(x) d x=\phi(0)
$$

(6) a) Determine the result of the following distribution acting on an arbitrary Schwarz function $\phi \in \mathcal{S}(\mathbb{R})$.

$$
\int_{-\infty}^{\infty} \delta(\sinh x) \phi(x) d x
$$

Recall, that $\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \sinh ^{\prime}=\cosh$, and $\cosh ^{2} x-\sinh ^{2} x=1$.
(4) b) We consider the function $g: \mathbb{R} \rightarrow \mathbb{R}$ in problem $2(\mathrm{~d})$. Show that g satisfies the ordinary differential equation $g^{\prime}+\lambda g=0$ almost everywhere. Explain what the annotation "almost everywhere" means in this case.
(6) c) Show that, in the distributional sense, T_{g} satisfies the ordinary differential equation

$$
T_{g}^{\prime}+\lambda T_{g}=\lambda T_{\delta}
$$

in which the right hand side denotes the Dirac point distribution defined above.
(4) d) Derive the Fourier transform of the ordinary differential equation

$$
T_{g}^{\prime}+\lambda T_{g}=\lambda T_{\delta}
$$

by applying the Fourier transformation \mathcal{F} to both sides of the equation, and show that \hat{g} is a solution.

