EXAMINATION: MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

Course code: 8D020.

Date: Thursday April 8th, 2010.

Time: 14h00 - 17h00.

Place: AUD 13

Read this first!

- Write your name and student identification number on each paper.
- The exam consists of 3 problems on 5 pages. The maximum credit for each item is indicated in parenthesis.
- Motivate your answers. The use of course notes and calculator is allowed. The use of the problem companion, opgaven- en tentamenbundel, is not allowed.
- You may provide your answers in Dutch or (preferably) in English.

Good Luck!

1 Linear Algebra

Consider the set $\mathcal{C}^{\infty}(H^1)$ of \mathbb{C} -valued, infinitely differentiable functions on a unit half-circle H^1 . We parametrize functions $f \in \mathcal{C}^{\infty}(H^1)$ either by an angular coordinate $\theta \in [0, \pi]$ or by the corresponding projection onto the z-axis, being $z = \cos \theta$ (see Figure 1). We equip the function space $\mathcal{C}^{\infty}(H^1)$ with the inner product

$$\langle f|g\rangle := \int_{0}^{\pi} f^{*}(\theta) g(\theta) d\theta , \text{ for } f, g \in \mathcal{C}^{\infty}(H^{1}) ,$$
 (1)

with f^* denoting the complex-conjugate of f. The corresponding measure is given by $\|f\| := \sqrt{\langle f|f\rangle}$. For our calculations we utilize the orthogonal basis functions

$$b_n: \theta \mapsto \cos(n\theta), \text{ for } n \in \{0, 1, 2, \dots\}.$$

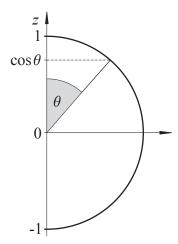


Figure 1: Half-circle H^1 parameterized by angle $\theta \in [0, \pi]$ or projection $z = \cos \theta \in [-1, 1]$.

(4) a) With $e^{i\theta} = \cos\theta + i\sin\theta$, proof the trigonometric identity

$$\cos^2\theta + \sin^2\theta = 1$$
 for $\theta \in \mathbb{R}$.

Note, that $\cos^2\theta$ stands for $(\cos\theta)^2$ and $\sin^2\theta$ stands for $(\sin\theta)^2$.

(4) b) Proof Moivre's formula

$$(\cos \theta + i \sin \theta)^n = \cos(n \theta) + i \sin(n \theta)$$

for $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$.

(6) c) Show, that the inner product

$$\langle f|g\rangle := \int_{-1}^{1} f^*(\arccos z) g(\arccos z) \frac{dz}{\sqrt{1-z^2}}, \text{ for } f, g \in \mathcal{C}^{\infty}(H^1).$$
 (2)

is equivalent to the inner product in equation (1). Note, that \arccos is the inverse function of cos. Hence, $z = \cos \theta$, $\theta = \arccos z$, and $\theta = \arccos(\cos \theta)$ for all $\theta \in [0, \pi]$.

- (5) d) Express the first three basis functions b_n with n=0,1,2 as polynomials $T_n(z)$ of z. Remark: the polynomials $T_n(z)$ are the so-called Chebyshev polynomials of the first kind.
- (5) **e**) Verify the orthogonality relation for all $n = \{0, 1, 2, 3, \dots\}$.

$$\int_{-1}^{1} T_n^*(z) T_m(z) \frac{dz}{\sqrt{1-z^2}} = \begin{cases} \pi &, n=m=0\\ \frac{\pi}{2} &, n=m\neq 0\\ 0 &, n\neq m \end{cases}$$
(3)

Tip: Remember the relation between $T_n(z)$ and $b_n(\theta)$.

(6) f) Derive the recursion relation

$$T_n(z) = 2 z T_{n-1}(z) - T_{n-2}(z)$$

for all $n \in \{2, 3, 4, \dots\}$.

Tip: First proof the trigonometric relation $\cos(n \theta) = 2 \cos(\theta) \cos((n-1) \theta) - \cos((n-2) \theta)$.

(5) g) Determine the expansion of function $v: z \mapsto \sqrt{1-z^2}$ in the orthonormal basis

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix} = \frac{1}{\sqrt{\pi}} T_0, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ \vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_1, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ \vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_2, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ \vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_3, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \vdots \end{pmatrix} = \sqrt{\frac{2}{\pi}} T_4, \dots$$

Neglect all basis functions with $n \geq 5$.

(5) **h)** Determine the matrix M of the linear transformation $f \mapsto z f$ in the orthonormal basis given above. Again, neglect all basis functions with $n \ge 5$. Tip: Recall the result of problem 1(f).

(5) i) Prove or disprove, that the following definition is an inner product for function space $\mathcal{C}^{\infty}(H^1)$?

$$\langle f|g\rangle := \int\limits_0^\pi \left(f^*\!(\theta)\,g(\theta) + 1\right)d\theta \ .$$

2 Fourier Transformation

We adhere to the following definition of a Fourier transformation:

$$\hat{f}(\omega) = \mathcal{F}[f](\omega) := \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$
.

Inverse Fourier transformation:

$$f(x) = \mathcal{F}^{-1} \Big[\hat{f} \Big](x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i \omega x} d\omega$$
.

(4) a) Show that

$$\int_{-\infty}^{\infty} f(x) \, dx = \hat{f}(0) \; .$$

(5) b) Show that

$$\int_{-\infty}^{\infty} x f(x) dx = i \hat{f}'(0) .$$

Note, that $\hat{f}'(0)$ denotes the derivative of the Fourier transform \hat{f} at $\omega = 0$.

(6) c) Show that for h(x) := f(ax) with $a \in \mathbb{R}$ and $a \neq 0$, the Fourier transform is given by

$$\hat{h}(\omega) = \frac{1}{|a|} \, \hat{f}\left(\frac{\omega}{a}\right) \ .$$

(6) d) Consider for $\lambda > 0$ the function

$$g: x \mapsto \begin{cases} 0 & \text{for } x < 0 \\ \lambda e^{-\lambda x} & \text{for } x \ge 0 \end{cases}$$

Derive the Fourier transform \hat{g} .

Consider the two cardinal B-spline functions

$$B_0: x \mapsto \begin{cases} 1 & \text{for } -\frac{1}{2} \le x \le \frac{1}{2} \\ 0 & \text{otherwise} \end{cases}$$

and

$$B_1: x \mapsto \begin{cases} 1+x & \text{for } -1 \le x \le 0\\ 1-x & \text{for } 0 < x \le 1\\ 0 & \text{otherwise} \end{cases}.$$

(5) e) Show, that $B_1 = B_0 * B_0$ where * denotes the convolution

$$(f * g)(x) := \int_{-\infty}^{\infty} f(y) g(x - y) dy.$$

- (4) **f**) Determine the Fourier transform \hat{B}_0 .
- (5) **g)** Determine the Fourier transform $\hat{B_1}$. Recall the Fourier theorem $\mathcal{F}[f * g] = \mathcal{F}[f] \mathcal{F}[g]$.

3 Distribution Theory

The Dirac point distribution, or more loosely speaking the Dirac δ -function, provides a tempered distribution with the following property.

$$T_{\delta}\left[\phi(x)\right] := \int_{-\infty}^{\infty} \delta(x) \, \phi(x) \, dx = \phi(0) .$$

(6) a) Determine the result of the following distribution acting on an arbitrary Schwarz function $\phi \in \mathcal{S}(\mathbb{R})$.

$$\int_{-\infty}^{\infty} \delta(\sinh x) \ \phi(x) \, dx \ .$$

Recall, that $\sinh x = \frac{1}{2} (e^x - e^{-x})$, $\sinh' = \cosh$, and $\cosh^2 x - \sinh^2 x = 1$.

(4) **b)** We consider the function $g: \mathbb{R} \to \mathbb{R}$ in problem 2(d). Show that g satisfies the ordinary differential equation $g' + \lambda g = 0$ almost everywhere. Explain what the annotation "almost everywhere" means in this case.

(6) c) Show that, in the distributional sense, T_g satisfies the ordinary differential equation

$$T_q' + \lambda T_g = \lambda T_\delta ,$$

in which the right hand side denotes the Dirac point distribution defined above.

(4) d) Derive the Fourier transform of the ordinary differential equation

$$T_g' + \lambda T_g = \lambda T_\delta ,$$

by applying the Fourier transformation \mathcal{F} to both sides of the equation, and show that \hat{g} is a solution.