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1. Stability of critical points in gradient magnitude image. Consider the n+1-dimensional
scale space gradient magnitude image v(x, t) = ‖∇u(x, t)‖2, in which u(x, t) is obtained by
convolution of the (n-dimensional) high resolution raw image, f(x) say, with a normalized
Gaussian

φt(x) =
1√

4πt
n exp

[
−‖x‖

2

4t

]
.

Note that this means that u(x, t) (but not v(x, t)) satisfies the heat equation

∂u

∂t
(x, t) = ∆u(x, t) ,

with initial condition u(x, 0) = f(x).

a. It is tacitly assumed that the raw image is defined on all of IRn by “zero padding”. Solve
the heat equation subject to the given initial condition (and suitable boundary condition at
infinity) so as to prove that the solution is indeed given by the convolution

u(x, t) = (f ∗ φt) (x) .

(Hint: Fourier transformation.)

b. Show that∇u(x, t) = (f ∗ ∇φt) (x). Sketch the proof of well-posedness of this differentiation
method, i.e. argue that a small perturbation of raw data δf(x) induces a small perturbation
δ∇u(x, t) for each fixed t. What does “small” mean here?

c. Consider a spatial critical point of v(x, t), i.e. a point at which the n first order spatial
derivatives of v(x, t) vanish for some fixed scale t. Is such a point also a spatial critical point of
u(x, t)? Argue that there are two qualitatively distinct types of spatial critical points of v(x, t).
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d. Compute the lowest order nontrivial Taylor polynomial of v(x, t) at a spatial critical point,
the origin say, in terms of spatial derivatives of u at the origin (0, 0) ∈ IRn+1 (assuming that
both ‖x‖ as well as |t| are small).

e. Use this to evaluate the following “total variation norm” by approximation in terms of
spatial derivatives of u at the origin:

TVε[v] def=
∫

Ωε

‖∇v(x, t)‖2 dV ,

in which Ωε : ‖x‖2 < ε2 for suitably small ε > 0, i.e. a spatial ball of radius ε. In your answer
you should argue that ∫

Ωε

xi xj dV = Kε δij (i, j = 1, . . . , n) ,

for some ε-dependent constant Kε with limε→0 Kε = 0, but you don’t need to evaluate the
numerical value of this constant.

f. Define a differential invariant at the origin which captures the total variation norm locally
by carrying out a suitable limiting procedure for the above integral as ε → 0.

g. Give a diagrammatic representation of the differential invariant derived above which holds
in any dimension. If possible, derive an equivalent diagrammatic representation in terms of
“irreducible diagrams” for the special cases n = 2 and n = 3 (cf. [2, Section 5.3.2]).

h. Give an equivalent formula in terms of the “Hessian gauge”, i.e. in terms of a local spatial
coordinate frame at the origin, with coordinates p = (p1, . . . , pn) say, such that all mixed second
order partial derivatives of u in this frame vanish at the origin.

g. Argue why this differential invariant can (or cannot) be used as a measure of stability of
the critical point of interest.

2. Beyond Cartesian invariance.

Consider the following p-parametrised differential invariant in n = 2 dimensions, with p ≥ 0:

Ip(u) def=
∂2u

∂v2

[
∂u

∂w

]p−1

,

in which (v, w) are the coordinates relative to a positively oriented, local Cartesian coordinate
frame at an implicitly given point in the image, the origin say, such that the positive w-axis is
aligned with the gradient (the “gradient gauge”). Thus the (v, w)-frame varies from point to
point in the image. We will henceforth write Ip = uvv up−1

w for short.

a. Express Ip in terms of an arbitrary, global Cartesian coordinate system (x, y) in terms
of tensor index notation using the Einstein summation convention. That is, your expression
should contain only full contractions of index pairs indicating partial derivatives.

b. Express Ip in terms of an arbitrary, global Cartesian coordinate system (x, y) in terms of
explicit x- and y-derivatives.
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c. Give the corresponding diagrammatic representation of Ip (cf. [2, Section 5.3] for examples).

d. Argue why Ip is a Cartesian differential invariant. To which group does the notion of
“invariance” refer?

e. Show that I0 is invariant under the group of invertible grey-level transformations, i.e. if
v = γ(u) with γ′(u) > 0 for all grey-levels u (e.g. histogram equalization), and if we define

γ∗I0(u) def= I0(γ(u)) ,

then γ∗I0 = I0. Show that this is no longer true if p 6= 0.

f. The invariance property above indicates that I0 must refer to some local geometric property
in the image which does not depend on a grey-level metric. Which?

g. Now consider I3. Show that this invariant is well-defined even if the (v, w)-gauge does not
exist, i.e. if the point of interest happens to be a critical point (uw = 0). Is this also true for
Ip in general?

h. Show that I3 is invariant under the group of area preserving affine transformations, i.e.
transformations of the type x′i = aij xj + bi with det a = ±1. (Note: You only need to verify
invariance under the non-Cartesian extension, i.e. area preserving affine scalings.) Show that
this generalised invariance no longer holds if p 6= 3.

i. I3 has been proposed as a viable “corner detector” [1]. A “corner” is defined as any point at
which the gradient magnitude (“edgeness”) and the curvature of the local iso-intensity contour
are simultaneously large. (Thus it would be better to talk about “cornerness”, since it is
essentially undefined what “large” means and since I3 can be computed at any point in the
image.) Argue what the abovementioned invariance implies for the interpretation of what a
“corner of given strength” is. (In your answer you should take into account what the precise
trade-off is between the contributions of “edgeness” and curvature.)

j. A popular “edge” detection method is obtained by taking the zero-crossings of the Laplacian,
i.e. the loci of points where ∆u = 0. In general this leads to closed contours, or contours that
end on the image boundary. However, this method is known to produce counter-intuitive edges
at sharp corner points. Explain the failure of the Laplacian zero-crossings method at such
point by showing that ∆u = uww − κuw, with κ = −uvv/uw = −I0, and interpreting the right
hand side of this formula in terms of local image features (especially near and off “corners”
and “edges”).
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